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dPL UAVSAR Evolution @’

e It is now more than a decade since the beginning of the UAVSAR program
and the question is in what direction(s) should the system evolve.

e UAVSAR continues to expand its capabilities in several directions that
include:

— Multi-squint mode
— Bistatic Observations
— Circular Trajectories and spotlight modes
— Increased bandwidth and sampling frequency
— Single-pass L-band interferometry (on Global Hawk)
— Tomography
e We are also interested in other ideas or experiments that can be conducted

with a minimal amount of hardware and flight hours that can expand the
capabilities or range of applications of the UAVSAR system.
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Multi-Squint



JPL Multi-Squint Observations @

* Vector deformation measurements using differential radar interferometry can
normally only be obtained by acquiring multiple repeat pass acquisitions from
different vantages.

e This prompts one to ask:

* s there a way to obtain the full vector deformation using a single repeat
pass?

e (Can we estimate something about the tropospheric delay term?

e UAVSAR has the ability to acquire data simultaneously at multiple squint
angles thus opening the possibility of obtaining vector deformation
measurements.

e Multi-squint interferometric observations my potentially be used to obtain
additional vegetation structure measurements.

e Verify azimuth symmetry assumptions for flat terrain
e Provide additional vantages over azimuthally sloped terrain

* Some k, diversity
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UAVSAR Data Acquisition Modes

e
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_JPL Differential Phase Measurement @/

e The differential interferometric phase measurement is given by
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Topography Change Atmosphere
Term Term Term

e Topography term is assumed known and
removed for remainder of discussion

Simulated phase
artifacts due to
differential
tropospheric delay |
between two passes

e Measurement only of surface displacement
along line-of-sight that can not be
distinguished from tropospheric path delay

e Tropospheric path delays cause artifacts in

APuopo repeat-pass interferometric synthetic aperture
radar (InSAR) measurements of surface
displacement

AP range — Rapidly varying tropospheric delays (both
spatially and temporally) are most
/ problematic
A A — Such variations are primarily due to
S changes in water vapor content along signal
CZ propagation path



JPL Multi-Squint Geometry @’

<P
O O,
Flight Pah > | p> Po
e
/A 0o Squint Angle
Psa = (o qu/ 05,
-_/ 0, .

—
—
—_——
=
—
—
—
—

A
- S
—__—_—

------ Along-track

‘ oordinate
* p

Range Coordinate

Straight, horizontal SAR flight path over flat Earth

Unwrapped InSAR phase
Thin-layer troposphere just above ground surface cf — [ dp ds d| ]
Ideal conditions:
— Good interferometric correlation T 47” [(cf, g> +A patm} 1 Droise
— No 1onospheric effects A A
— Perfectly repeating flight path = Tﬂ |:dp cosOsq + dssin by + pa:;;gadmde} + Gnoise
5q

Work in slant-plane (p,s) coordinate system



Deformation (cm)

JPL Subsidence Model @/

e To test the inversion we simulated a subsidence bowl with 10 cm of vertical
displacement and 5 cm of radially inward lateral displacement.

e For the atmosphere we assumed a simple -8/3 power law PSD with 0 mean

and a 2 cm standard deviation.
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| - I Simulation Results @/

e Results of the inversion for the subsidence bowl assuming a 0.92
interferometric correlation. Precision results follow the model.

Broadside
Line-of-Sight
Measurement



_JPL Magnitude and Correlation for 6,,=0° @/

UAVSAR collected three passes of fully
polarimetric multi-squint data with an
azimuth steering angle of +15°.

Data was collected at a heading of 350° at
the UAVSAR nominal flying altitude of 12.5
km over the Rosamond Dry Lake Bed
calibration site in California.

Region is located in Mojave Desert with a
urban area in southern section of the scene.

Time interval between  multi-squint
observations is approximately 20-25 sec.




AdPL Multi-Squint Interferograms @/
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Data collected July 10,2010
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Bistatic
Observations
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Bistatic Observations @

e Bistatic observations offer the ability to collect data with:

— Variable baselines and without temporal decorrelation

— Repeat pass times from seconds to minute to characterize for short temporal

decorrelation of targets

— Scattering geometries that extend beyond the standard backscatter geometries.

e There are both observational and
processing challenges with bistatic
observations. Observation challenges
include:

—Determining allowable safe bistatic
flying configurations.

—Assessing which bistatic
configurations are viable from a
hardware safety and wuseful signal
perspectives.

—Recording both direct and reflected
signals.

—Maintaining bistatic imaging
geometry during flight.



JPL Bistatic Observations @’

* We have two copies of the UAVSAR radar and two G-III aircraft so we are
currently studying bistatic experiment possibilities using two UAVSAR L-
band radars.

— We have also studied doing bistatic observations with other platforms.

* There are a number of processing considerations and modifications needed
to handle motion compensation and focusing that are under development.
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Spotlight
Modes




dPL Spotlight Modes @’

Spotlight imaging modes provide a means of obtaining increased azimuth
resolution and of providing imagery with continuing vary aspect angle.

— Use the azimuth beam steering capability to keep the beam pointed at a

fixed target or in slewed spotlight mode where the beam velocity is less
than the aircraft velocity.

— Fly 1s a circular trajectory to stare at a fixed region to obtain continuous
aspect angle imaging of a scene.

~
Scamm=—"
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Increased Bandwidth
and
Sampling Frequency




JPL Increased Bandwidth and Sampling Frequency @’

e The present digital system is limited to a sampling frequency of 180 MHz or
and effective range bandwidth of 80 MHz (1.75 m range resolution).

e We are exploring upgrades to the digital system that would allow for
increased bandwidth and sampling frequency.

— This requires both new hardware and software changes to the flight
system.



JPL e

Single-Pass
L-band Interferometry
(Global Hawk)




- R Single Pass L-band PolInSAR @’

 One of the goals from the very beginning of the UAVSAR development
was to have a single pass L-band PolInSAR system.

e A single pass PolInSAR system would enable polarimetric interferometric
observations without temporal correlation issues.

— Ideal for PolInSAR studies of vegetation and ice sheet or glaciers.

— Mapping of tree height and bare surface topography valuable for
ecosystem, hydrology and other applications.

— Topography measurements would have same phase center in volume as
potential L-band measurements.

— Useful for testing out potential future tandem satellite L-band
algorithms.

e Need a platform with mount points for two antennas with sufficient
baseline to have adequate k, values.

— Global Hawk flown at appropriate altitudes can support single pass L-
band interferometry.



- Global Hawk Dual Pod System @’

* Modify Global Hawk to have to pods mounted on wings to with a 5.5 m
baseline housing the active array L-band antenna, INU and GPS
antenna.
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Tomography



JpPLu Tomography @’

e UAVSAR has conducted several non-zero baseline data collections in the US,
Panama that have been used for PolInSAR and SAR tomography studies.
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- Tomography Collections @’

e UAVSAR has made limited collections suitable for tomographic observations.
Recently we have added several collections in Germany and Gabon, Africa suitable for
tomographic experiments.

e Data in Gabon will be collected on multiple dates suitable for multi-temporal
tomographic studies.

e Data in Germany is collected with two different baseline configurations for the
Traunstein Forest and over Munich City for urban studies.
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Germany Lines

e UAVSAR collected both multi-squint and tomographic lines

and Munich.
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JPL Mathematical Formulation @’

* Interferometric phase measurements, ¢., obtained from multiple squint angles
with line-of-sight vectors, ¢;,i=-1,0,1

where

>

l_1 = cosOsyp —sinby,s
d:[dp dg dL] bo=p

01 = cosOsqp + sinbs, s

e These observations can been written in matrix form as

- AT S
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_JIPL Solution Vector @/

e The solution vector to the multi-squint equations is given by

- 1 (5+cos(20s4))d—1 3 dq -
dp 4 sin% 04, 2 tan? 044 sin? O,
D=| d, |= 5 —%¢
— s — 2 sin? O,
datm 3 d_1 4 1 (2+cos(2654))d1
i 2 tan? 044 sin? O 2 tan? 05, sin? 6,5,

where d.=(1/4m)¢. are the line-of-sight displacements derived from the phase
measurements.

e The line-of-sight vector can be written in the form
X sinf,sin 4,
¢ = | sinf,cosb,,
—cos 8y
e The squinted looked angle, 6, , as function of the broadside look angle, 6,_, is
given by
tan @,

tan @, =
7 cos 0,.

and the cosine of the squint angle given by

cos 0s, = sinfysin 6y, cos b, + cos b cos by,



_JPL Covariance Matrix @’

* The covariance matrix for the least squares solution is given by
_ Tat—-1 4171
Covp = [A Q A}

where Q is the covariance matrix of the observations given by

oA 1 17 .
_47T\/2NL 72 O

where v 1s the interferometric correlation and N; is the number of looks.

o = O
_ O O

» Explicitly, the covariance matrix is
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