AirMOSS soil moisture retrieval: From forest to backscatter to soil moisture

Sermsak Jaruwatanadilok, My-Linh Truong-Loï and Sassan Saatchi
Jet Propulsion Laboratory
California Institute of Technology

Copyright 2013 California Institute of Technology. Government sponsorship acknowledged.
Outline

- Airborne Microwave Observatory of Subcanopy and Subsurface (AirMOSS) mission and objective
- From forest to backscatter
 - Derivation of parameters from FIA data: relationship of biomass with diameter at breast height (DBH), tree height, and tree diameter
 - Finding fit parameters
- From backscatter to soil moisture
- Field campaign
Uncertainty in Annual and Seasonal Net Ecosystem Exchange Estimates over North America

Based on spatial resolution of ~ 0.5 degree
Uncertainty in Annual and Seasonal Net Ecosystem Exchange Estimates over North America

Bottom-up scaling

- **North America water and carbon fluxes**
- Reduce uncertainty of continental Scale fluxes
- AIRMOSS model integration over North American Biomes
- Extrapolate between biomes using stats derived at 50km scale
- AirMOSS data over modeling sub-grid: 2500 km²
- Spatial and temporal distribution of RZSM @ 100m; capture seasonal & interannual variability (ED-2 NEE & land hydrology model runs)
- Tower site footprint
 - 1km x 1km
 - Currently used to calculate NEE by routine scaling up; RZSM assumed homogeneous
- Plot Level
 - (0-50m)

Scientific Approach (2)

Based on spatial resolution of ~ 0.5 degree
Forward model expression

Distorted Born approximation model

\[\sigma_{pq}^o = \sigma_{pq _direct}^o + \sigma_{pq _double_boundary}^o + \sigma_{pq _surface}^o \]

\[\sigma_{pq _direct}^o = \sigma_{pq _crown}^o + \sigma_{pq _trunk}^o \]

\[\sigma_{pq _double_boundary}^o = \sigma_{pq _crown_ground}^o + \sigma_{pq _trunk_ground}^o \]

\[\sigma_{pq _crown}^o = (\rho_1 \sigma_{pqld} + \rho_b \sigma_{pqld} + \rho_{b2} \sigma_{pqbd2}) \left[1 - \exp\left(-2 \text{Im}\left\{ K_{pq} + K_{qc} \right\} d_c \right) \right] \frac{2 \text{Im}\left\{ K_{pc} + K_{qc} \right\}}{2 \text{Im}\left\{ K_{pc} + K_{qc} \right\}} \]

\[\sigma_{pq _trunk}^o = (\rho_1 \sigma_{pqld} + \rho_b \sigma_{pqld} + \rho_{b2} \sigma_{pqbd2}) \left[1 - \exp\left(-2 \text{Im}\left\{ K_{pq} + K_{qc} \right\} d_c \right) \right] \exp\left(-2 \text{Im}\left\{ K_{pc} + K_{qc} \right\} d_c \right) \]

\[\sigma_{pq _surface}^o = \sigma_{pqg} \exp\left(-2 \text{Im}\left\{ K_{pc} + K_{qc} \right\} d_c \right) \left(K_{pt} + K_{qt} \right) \]

\[\sigma_{pq _crown_ground}^o = (\rho_1 \sigma_{pqld} + \rho_b \sigma_{pqld} + \rho_{b2} \sigma_{pqbd2}) \left[1 - \exp\left(-2 \text{Im}\left\{ K_{pc} - K_{qc} \right\} d_c \right) \right] \frac{2 \text{Im}\left\{ K_{pc} - K_{qc} \right\}}{2 \text{Im}\left\{ K_{pc} - K_{qc} \right\}} \]

\[\sigma_{pq _trunk_ground}^o = (\rho_1 \sigma_{pqld} + \rho_b \sigma_{pqld} + \rho_{b2} \sigma_{pqbd2}) \left[1 - \exp\left(-2 \text{Im}\left\{ K_{pc} - K_{qc} \right\} d_c \right) \right] \frac{2 \text{Im}\left\{ K_{pc} - K_{qc} \right\}}{2 \text{Im}\left\{ K_{pc} - K_{qc} \right\}} \]

\[r_g = \exp\left(-4k_o^2s^2 \cos^2 \theta \right) \]

\[\Gamma_p = R_p \exp\left(2i \left[K_{pc} d_c + K_{pc} d_l \right] \right) \]

\[\sigma_{pqad} = 4\pi \left(f_{pqad} \right)^2, \sigma_{pqad1} = 4\pi \left(f_{pqad1} \right)^2, \sigma_{pqad2} = 4\pi \left(f_{pqad2} \right)^2, \sigma_{pqad12} = 4\pi \left(f_{pqad1} f_{pqad2} \right)^2 \]

\[K_{pq} = k_o \cos \theta + \frac{2\pi}{k_o \cos \theta} \left[\rho_1 f_{pqf}^f + \rho_{b1} f_{pqf}^f b_1 + \rho_{b2} f_{pqf}^f b_2 \right] \]

\[K_{qf} = k_o \cos \theta + \frac{2\pi}{k_o \cos \theta} \left[\rho_1 f_{qpf}^f \right] \]
Forward model expression

Simplification of the distorted Born approximation

Born approximation model requires detailed information about vegetation structure

\[0_{HH} = A_{HH} \cos W_{HH} \left(1 - \exp(-B_{HH} W_{HH} \sec \theta_0) \right) + C_{HH} W_{HH} \sin \left(\theta_0 \right) \exp(-B_{HH} W_{HH} \sec \theta_0) + S_{HH} \exp(-B_{HH} W_{HH} \sec \theta_0) \]

\[0_{VV} = A_{VV} \cos W_{VV} \left(1 - \exp(-B_{VV} W_{VV} \sec \theta_0) \right) + C_{VV} W_{VV} \sin \left(\theta_0 \right) \exp(-B_{VV} W_{VV} \sec \theta_0) + S_{VV} \exp(-B_{VV} W_{VV} \sec \theta_0) \]

\[0_{HV} = A_{HV} \cos W_{HV} \left(1 - \exp(-B_{HV} W_{HV} \sec \theta_0) \right) + C_{HV} W_{HV} \sin \left(\theta_0 \right) \exp(-B_{HV} W_{HV} \sec \theta_0) + S_{HV} \exp(-B_{HV} W_{HV} \sec \theta_0) \]

\(W \) is the biomass (Mg/ha)
\(s \) is the rms height
\(k \) is the wavenumber
\(R_p \) and \(R_q \) are the Fresnel reflection coefficients
\(S_{HH}, S_{VV} \) and \(S_{HV} \) are the scattering term from bare soil surface
\(\theta_0 \) is the local incidence angle

\(\alpha_{pq}, \beta_{pq}, \delta_{pq} \) are structural parameters

\(A_{pq}, B_{pq} \) and \(C_{pq} \) are calibration factors
Deriving structure parameters

- Forest Inventory Agency (FIA) data provides
 - Tree species
 - Tree height
 - Tree diameter
 - Density of tree and more
- We find fits for these information as a function of above ground biomass (AGB)
- Using the information for fits, we simulate backscatter and its component (direct, direct reflect, and the exponential decay factor) using distort Born model
- We capture information on average for each forest in ‘structure parameters’ α_{pq}, β_{pq}, δ_{pq} as a function of biomass
Deriving structure parameters

• Trunk parameter
 – Use data for these relationship:
 • AGB with Basal Area (BA)
 • AGB with total tree Height (H)
 • AGB with average Diameter (D)
 – Tree Per Hectare (TPH) = 4BA/(\pi*D^2)
 – Use Jenkin’s eq. to get Biomass of Trunk (Bt)
 – Height of Trunk (Ht) = 4BT/(gt*TPH*\pi*D^2)
 where gt is the specific gravity of trunk
 – Crown height = H – Ht

• Branch parameter
 – Use Jenkin’s eq to get Biomass of branch -> Bb
 – Interpolate branch length using relationship of AGB and trunk height * a factor (0.2)
 – Interpolate branch diameter using relationship of AGB and trunk diameter * a factor (0.2)
 – Branch density (BPH) = 4*Bb/(gb*\pi*Db^2*Lb)
 where gb is the specific gravity of branch
Structure parameter fit

<table>
<thead>
<tr>
<th></th>
<th>pq</th>
<th>pq</th>
<th>pq</th>
</tr>
</thead>
<tbody>
<tr>
<td>HH</td>
<td>0.16499</td>
<td>0.95334</td>
<td>1.8361</td>
</tr>
<tr>
<td>VV</td>
<td>0.21843</td>
<td>0.91384</td>
<td>1.9728</td>
</tr>
<tr>
<td>HV</td>
<td>0.2568</td>
<td>1.7575</td>
<td></td>
</tr>
</tbody>
</table>
Training the model to site data

- Calibrated SAR data
- Use average soil moisture and roughness for the site
- Use plot level biomass values
- Create a series of points to estimate coefficients A_{pq}, B_{pq}, C_{pq}

$$
\begin{align*}
0_{HH} &= A_{HH} \cos \left(W_{HH} \right) (1 - \exp(-B_{HH}W_{HH} \sec \theta_0)) + C_{HH} \sin \left(W_{HH} \right) \exp(-B_{HH}W_{HH} \sec \theta_0) + S_{HH} \exp(-B_{HH}W_{HH} \sec \theta_0) \\
0_{VV} &= A_{VV} \cos \left(W_{VV} \right) (1 - \exp(-B_{VV}W_{VV} \sec \theta_0)) + C_{VV} \sin \left(W_{VV} \right) \exp(-B_{VV}W_{VV} \sec \theta_0) + S_{VV} \exp(-B_{VV}W_{VV} \sec \theta_0) \\
0_{HV} &= A_{HV} \cos \left(W_{HV} \right) (1 - \exp(-B_{HV}W_{HV} \sec \theta_0)) + C_{HV} \sin \left(W_{HV} \right) \exp(-B_{HV}W_{HV} \sec \theta_0) + S_{HV} \exp(-B_{HV}W_{HV} \sec \theta_0)
\end{align*}
$$
Backscatter model vs data

HH

VV

HV

total
double-bounce
volume
surface
measurements
Inversion process

\[
\sqrt{W} = a_0 + a_1 \sigma_{HH} + a_2 \sigma_{HV} + a_3 \sigma_{VV} \quad (1)
\]

Initial data & bounds
- \(W_0, M_{v0} (\varepsilon_0), s_0\)
- \(-0 < \varepsilon' < 80\)
- \(-0 < W' < 300\)
- \(-0 < s' < 0.1\)

Inversion process
Levenberg-Marquardt algorithm:

\[
S(W, \varepsilon, s) = \sum_{i=1}^{n} \left[\sigma_{pq} - f(W, \varepsilon, s) \right]^2
\]

\(\{R;G;B\} = \{\sigma_{VV}; \sigma_{HV}; \sigma_{HH}\}\)

classification

\(s_0 = \text{mean}(s) \quad \text{vegetated areas}\)

\(m_{v0} = \text{mean}(m_v) \quad \text{vegetated areas}\)

Application

AirSAR data - Howland forest – Maine – October 1994

$\sigma_{VV} ; \sigma_{HV} ; \sigma_{HH}$

Pixel Size: 1 arcsec
0 < mv < 50%
Ground measurement = 18.4%
Estimated value on this particular point = 21.5%
Field campaign

Howland forest – October 2012
Soil Moisture TDR Sensors
Data sampling strategy

1 km transects with sampling at 50m intervals with GPS at each location

Collect 5 parallel 50 m transects
With sampling at 10m intervals
with GPS at each location
Field measurements examples
THANK YOU! QUESTIONS?