The Soil Moisture Active and Passive (SMAP) Observing

**CEOS** Workshop

System

Mike Spencer, Richard West

Pasadena, CA

National Aeronautics and Space Administration

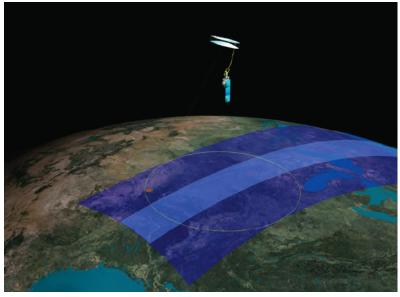
#### Jet Propulsion Laboratory California Institute of Technol Pasadena, California

California Institute of Technology Pasadena, California Copyright: 2009 California Institute of Technology. Government sponsorship acknowledged



Jet Propulsion Laboratory California Institute of Technology Pasadena, California

# Outline


- Key driving science requirements for SMAP mission.
- SMAP observation concept.
  - Real-aperture radiometer
  - High resolution radar product
- SMAP instrument and data product key features.
- Calibration Summary
  - RFI
  - Error budget



Jet Propulsion Laboratory California Institute of Technology Pasadena, California

# SMAP Mission

- The SMAP mission will measure global soil moisture and surface freeze/thaw state from space.
  - Soil moisture products at 10 km resolution, 4% volumetric accuracy.
  - Freeze-thaw products at 3 km resolution.
  - 3-day global coverage.
- SMAP mission currently in Phase A, with a planned launch date in 2014.
- SMAP measurement approach:
  - Passive L-Band radiometer (provided by GSFC) with 40 km resolution
  - Active L-Band Synthetic aperture radar (provided by JPL) with 3 km resolution
  - Shared-aperture rotating mesh antenna.
  - JPL in-house developed S/C.





Jet Propulsion Laboratory California Institute of Technology Pasadena, California

## Level 2 Science Requirements for Instrument Measurements

### Coverage/Revisit

- Average revisit time of 3 days for soil moisture globally.
- Morning observation time for soil moisture.

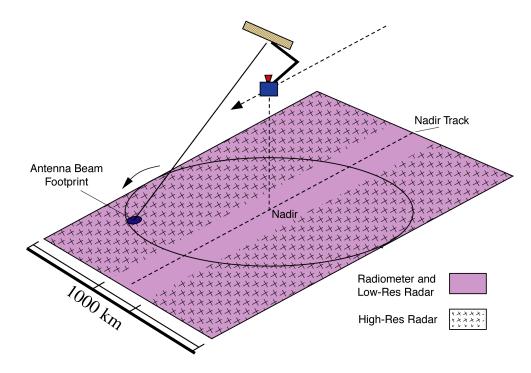
#### Incidence Angle

 Constant incidence angle for measurement between 35° - 50°.

#### Radiometer

- Frequency: L-Band (1.4 GHz).
- Polarizations: V, H, U.
- Resolution: 40 km.
- Relative Accuracy: 1.3 K.

#### <u>Radar</u>


- Frequency: L-Band (1.26 GHz).
- Polarizations: VV, HH, HV (or VH).
- Resolution: 3 km
- Relative measurement accuracy < 1 dB for each channel at 3 km resolution.
- Accuracy requirements met for minimum  $\sigma_{o}$  of -25 dB.

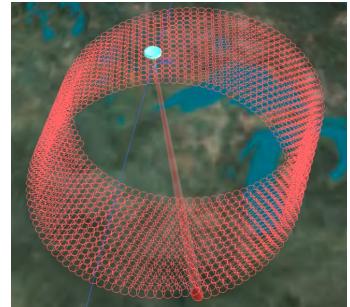


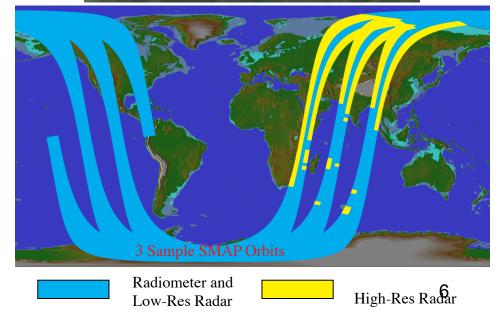
Jet Propulsion Laboratory California Institute of Technology Pasadena, California

# SMAP Instrument Key Features

- To meet requirement for 3-day revisit time at AM local time...
  - $\Rightarrow$  1000 km swath at 670 680 km dawn/dusk sun-synchronous orbit.
- For wide measurement swath of combined L-Band active and passive measurements...
  - $\Rightarrow$  Conically scanning reflector antenna.




- To achieve L-Band passive resolution of 40 km and and active resolution of 3 km ...
  - $\Rightarrow$  6 meter aperture antenna
  - $\Rightarrow$  14.6 rpm rotation rate
  - ⇒Real-aperture radiometer
  - ⇒ Synthetic-aperture radar processing
- Incidence angle
  ⇒Near-constant 40 deg incidence angle




Jet Propulsion Laboratory California Institute of Technology Pasadena, California

### SMAP Mission Concept: Data Collection

- Radiometer data collected continuously:
  - Entire orbit.
  - All 360 degrees of antenna scan (both forward and aft).
  - Capability for periodic "cold sky" looks.
- High-resolution SAR data:
  - Collected only on forward arc of scan
  - Collected only on morning portion of orbit
  - Collected only over land (using built-in land mask file).
- "Bonus" radar low-resolution, real aperture data
  - Collected continuously like radiometer data; entire orbit, 360 deg





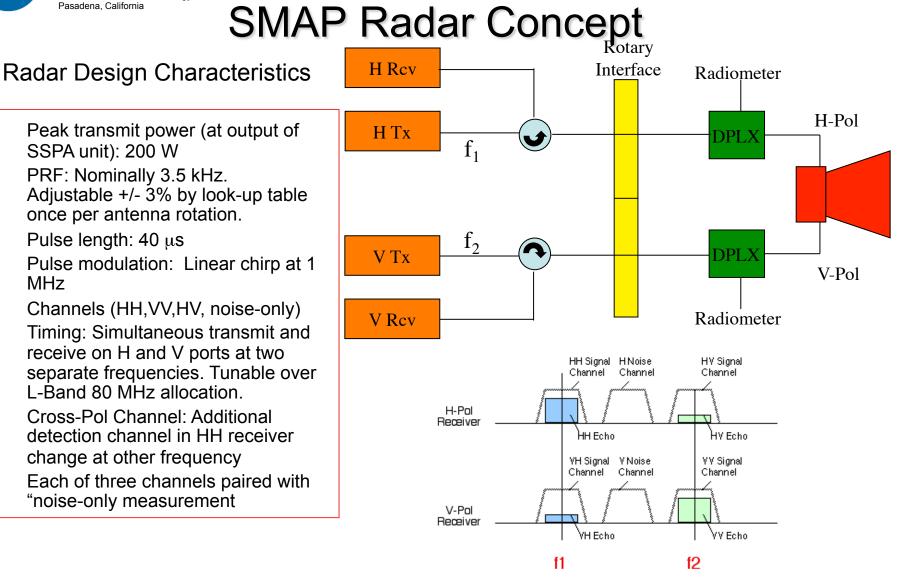


٠

٠

٠

٠

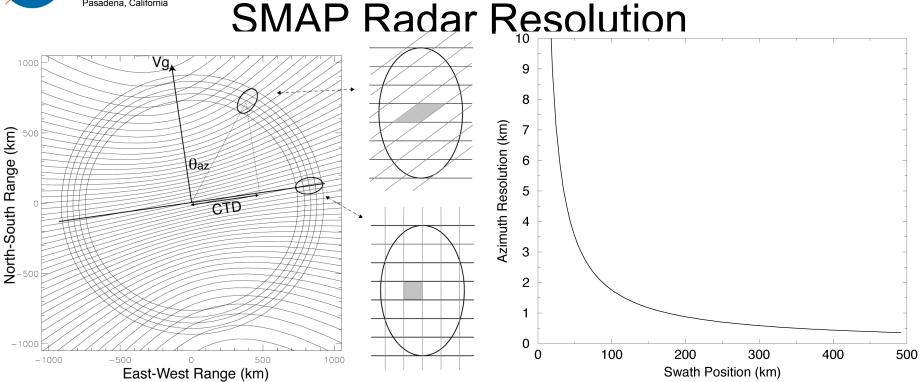

٠

٠

٠

National Aeronautics and Space Administration

Jet Propulsion Laboratory California Institute of Technology Pasadena, California




MWS-7

RadarCon 2009



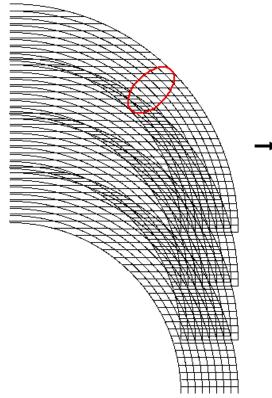
Jet Propulsion Laboratory California Institute of Technology Pasadena. California

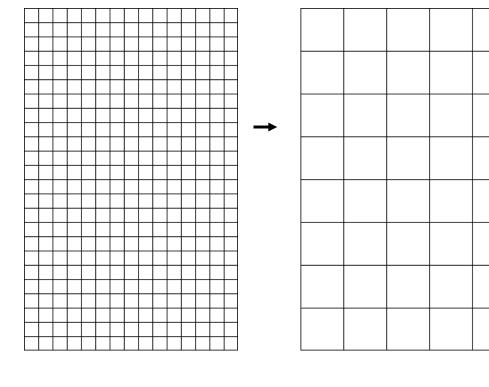


- Unfocused SAR processing.
- Azimuth resolution, and number of azimuth looks, driven by unique scanning geometry.
- High-resolution SAR data that meets science requirements for resolution and accuracy is over outer 70% of the measurement swath.



Jet Propulsion Laboratory California Institute of Technology Pasadena, California


## Low-Resolution (Real Aperture) **Products**


- Time ordered,  $6 \text{ km} \times 30 \text{ km}$ • range "slices" through antenna footprint (resolution and grid spacing not shown to scale). •
  - Somewhat similar to SeaWinds Ku-Band backscatter product.



Jet Propulsion Laboratory California Institute of Technology

## High-Resolution Radar Data Product



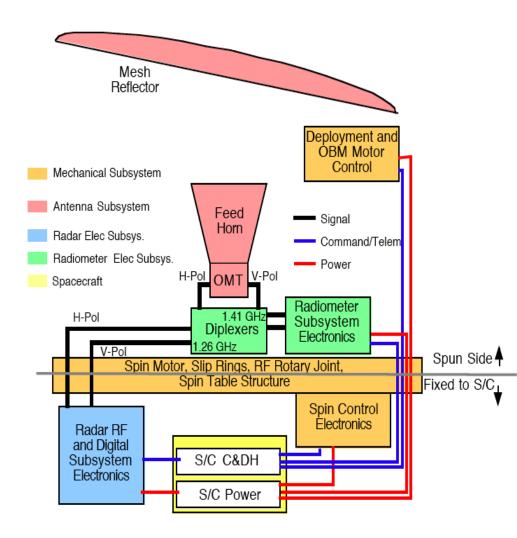


<u>Single-Look, Time-Ordered Data</u> (internal use only)

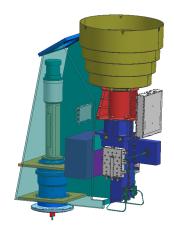
- Native resolution: 250 m in range, 400+ m resolution in azimuth.
- Each resolution element constitutes one independent "look" at surface.

#### 1 km Gridded, Re-Sampled Data (L1C)

- Data resampled and posted on 1 km grid, resolution may still be > 1 km near nadir.
- Each 1 km grid cell now has multiple "looks" at surface, decreased measurement variance.


#### 3 km (or whatever) Average Data

- 1 km posted product can be averaged up to 3 km, 10 km, etc. by investigators (using nested grids).
- Improved number of looks (and hence precision) at expense of spatial resolution.




Jet Propulsion Laboratory California Institute of Technology Pasadena. California

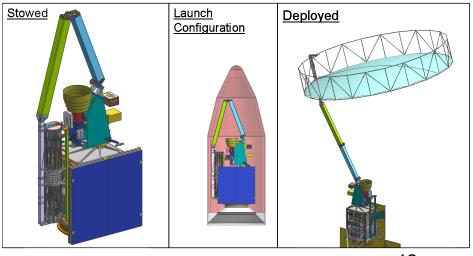
SMAP Instrument Concept



- Antenna Subsystem
  - Deployable mesh antenna, boom
  - Shared L-Band feed horn
  - Spin mechanism, slip rings
- Radar Electronics Subsystem
  - Includes RF interface from despun to spun side
- Radiometer Electronics Subsystem
  - Includes diplexers to separate radar and radiometer frequencies



**11** MWS-11

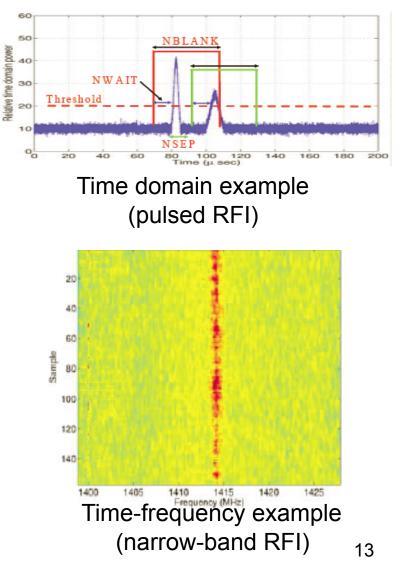



Jet Propulsion Laboratory California Institute of Technology Pasadena, California

## Mesh Reflector

- Key antenna requirements
  - Polarization: Dual-pol L-Band feed
  - Beamwidth: < 2.7 deg at 1.26 GHz</p>
  - Beam Efficiency: 90% at 1.4 GHz
  - Off-nadir look angle: 35.5°
  - Mesh Emissivity: < 0.004 at L-Band</li>
  - Pointing: 0.3° stability, 0.1° knowledge
- Antenna concept uses deployable mesh technology demonstrated in space for communications applications
- Antenna concept has been demonstrated in simulations to meet requirements while rotating.



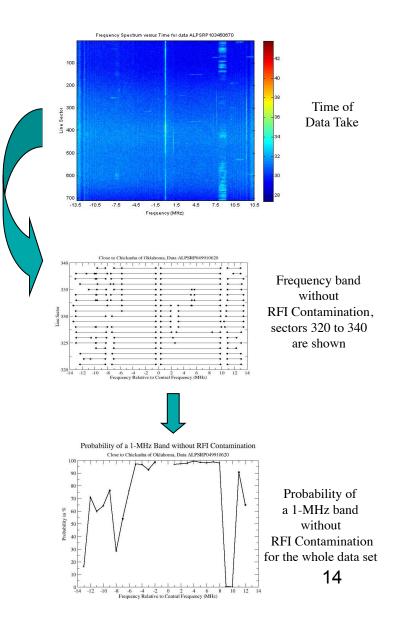





Jet Propulsion Laboratory California Institute of Technology Pasadena, California

**RFI:** Passive Radiometer

- Radiometer operates in L-Band "protected band", but might see leakage from adjacent bands.
- Mitigation Approach: Planning on a variety of techniques with impact to HW and ground processing.
- Detection
  - Time: look for pulses
  - Frequency: look for carriers
  - Signal statistics: test for Normality
- Mitigation
  - Remove corrupted time/frequency bins
- Baseline instrument design
  - Time-domain detection and blanking
  - Digitally implemented frequency subbanding and Kurtosis check being evaluated for inclusion in radiometer design






Jet Propulsion Laboratory California Institute of Technology Pasadena, California

## **RFI: Active Radar**

- Radar operates in "shared band" with lots of interferers.
- RFI mitigation strategy:
  - 1) Avoid "bad" portions of spectrum by tuning carrier according to pre-loaded table.
  - 2) Filter raw data in ground data processing if RFI is present.
- Characterize the L-Band RFI environment with ALOS/PALSAR data
  - Examine data close to the sites of interest in US and international for all available times.
  - Look for frequency bands which are consistently RFI free.
  - Calculate the probability of being RFI free as a function of frequency.
- Baseline Mitigation Strategy
  - Carrier frequency tunable over entire 80 MHz band
  - Large dynamic range to accommodate strong emitters
  - Residual RFI to be detected and removed in ground processing





Pasadena, California

### Jet Propulsion Laboratory California Institute of Technolog Radar Measurement Accuracy Budget

| Error Source                                 | Allocation<br>(dB) |
|----------------------------------------------|--------------------|
| Крс                                          | 0.72               |
| Calibration                                  | 0.35               |
| Contamination Terms (RFI, ambiguities, etc.) | 0.40               |
| Total (RSS)                                  | 0.9                |
| Requirement                                  | 1.0                |
| Margin (lin)                                 | 0.1                |
| Margin (rss)                                 | 0.43               |

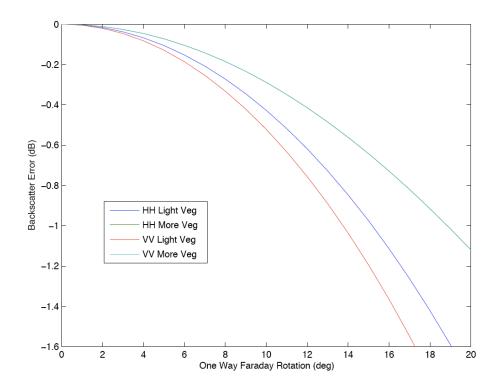
- Radar relative accuracy budget is • focused on determining changes in backscatter cross-section.
- Kpc is purely random term related to ٠ radar speckle and thermal noise and is driven by
  - Number of looks
  - SNR
- Radiometric calibration is • determined primarily by
  - Knowledge of changes in \_ transmit power and receiver gain.
  - Knowledge of changes in system RF losses.
  - Knowledge of pointing *changes* (primarily in elevation)
- Dominant contamination effect • expected to be from RFI.



National Aeronautics and Space Administration

### Jet Propulsion Laborator Radiometer Measurement Accuracy Budget

| Error Source             | Allocation (K) |
|--------------------------|----------------|
| ΝΕΔΤ                     | 0.57           |
| Antenna pattern          | 0.44           |
| Mesh emissivity          | 0.31           |
| Gain, offset uncertainty | 0.4            |
| Faraday rotation         | 0.2            |
| RFI                      | 0.1            |
| Total                    | 1.1            |
| Requirement              | 1.3            |
| Margin (lin)             | 0.2            |
| Margin (rss)             | 0.7            |


- NEΔT is set by front-end losses (3.2 dB), integration time (fore+aft), & bandwidth.
- Antenna pattern errors include instability of main beam efficiency; uncertainty in solar, sidelobe, space, and cross-pol contributions.
- Mesh emissivity is due to uncertainty in emissions and in gain.
- Gain & offset uncertainty is due to thermal fluctuation & finite time for internal calibration.
- Faraday rotation: residual remains after using 3<sup>rd</sup> Stokes to correct for it.
- RFI allocation is residual after mitigation.
- Total is found by adding mesh and gain, offset errors, then RSSing this with everything else and dividing by main beam efficiency (91%).



Jet Propulsion Laboratory California Institute of Technology Pasadena, California

## **Faraday Rotation**

- L-Band data susceptible to errors due to Faraday rotation (FR).
- FR a function of TEC and viewing geometry.
- Baseline measurement strategy is to use only 6 AM measurements to generate soil moisture.
- Radiometer: U-channel used to compute and apply FR correction
- Radar: For AM measurements, FR is relatively small (< 6 deg 90% of time) and results in small radiometric error (< 0.2 dB) which is likely correctable to better than 0.1 dB with coarse a priori knowledge of TEC.





Jet Propulsion Laboratory California Institute of Technology Pasadena, California

## Conclusions

- SMAP system is combined L-Band radar/radiometer for the measurement of soil moisture and surface freeze/thaw state.
- SMAP uses shared-aperture conically scanning deployable mesh antenna to achieve wide measurement swath, required spatial resolution.
- SMAP utilizes proven technologies in a unique way to meet science requirements.