National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology

> Understanding the Interaction Between Ocean Circulation, the Water Cycle, and Climate by Measuring Ocean Salinity

 \mathcal{D}

Juarius

National Aeronautics and Space Administration

The Aquarius Mission Calibration/Validation

Adam Freedman

Dalta McWatters

Aquatins Instrument Team

CEOS SAR Calibration and Validation Workshop 2009 17 - 19 November, 2009

Pasadena, California

ww.nasa.gov © 2009 California Institute of Technology. Government sponsorship ack

AQUARIUS/SAC-D Mission Introduction

- Aquarius retrieves sea-surface salinity (SSS) by measuring sea surface brightness temperature by using a very stable radiometer in L-band.
- The biggest error to this measurement is due to the sea surface roughness.
- A co-pointing scatterometer is used to accurately measure the sea surface roughness (to be removed by ground processing)
- The spacecraft (Service Platform, S/P) is built by CONAE (Argentina)
- Aquarius is the prime instrument on SAC-D, a joint NASA/CONAE mission
- The radiometer is built by GSFC
- Remainder of instrument is built/managed by JPL
- Launch planned for End of 2010

AQUARIUS/SAC-D Aquarius Instrument Overview

- Sea surface brightness temperature measured by stable polarimetric radiometers operating at 1.413 GHz (first three Stokes parameters).
- Coincident sea surface backscattering cross-section measured by stable polarimetric scatterometer operating at 1.26 GHz (HH, VV, HV, VH).
- Deployable offset parabolic monolithic reflector with three feedhorns provides three beams in a push-broom configuration.
- Technical resource allocations:
 - Mass: 375 kg
 - Power: 375 W
- Aquarius science requirement is to provide a systematic global Sea Surface Salinity map
 - 150 km Spatial Resolution
 - 0.2 psu Monthly Accuracy
 - Three Year Baseline Mission

Aquarius Cal/Val, CEOS SAR 2009 Adam Freedman, JPL

Aquarius Cal/Val, CEOS SAR 2009 Adam Freedman, JPL page 4 November 18, 2009

AQUARIUS/SAC-D The Aquarius Instrument

Aquarius instrument in deployed state at JPL. Reflector suspended by Gravity Off-Load Fixture (GOLF)

Aquarius instrument in deployed state at JPL. Fiber glass support struts hold the reflector when deployed in gravity environment.

page 5 November 18, 2009

Aquarius Cal/Val, CEOS SAR 2009 Adam Freedman, JPL

- Aquarius scatterometer radar is not a SAR!
- Aquarius scatterometer is a simple, "bit-bucket", receiver
- No ranging or phase requirements, just precise measurement of received power
 - No range compression, caltone, Doppler processing
- Only real aperture needed (low spatial resolution for ocean)
- No adaptive gain, time-dependent range, or adjustable PRF
 - Two calibrated attenuation settings for echo, two for loopback, 4 dB offset, changed by ground command
 - Receive window delays and widths adjustable by ground command
- Low PRF of 100 Hz, Long Tx pulse of 1 millisecond (due to radiometer measurement requirements), 4 MHz Tx chirp
 - No range or azimuth ambiguities
- Both radar and radiometer: primary calibration is for relative stability in the measured polarimetric power

Tight EMI requirements, high RFI sensitivity

AQUARIUS/SAC-D Key Design Challenges

- Very challenging science stability requirements:
 - Radiometer stability requirement: 0.13 kelvin over 7 days, orbits
 - Scatterometer stability requirement: 0.1 dB over 7 days, orbits
- Resulting in very challenging thermal stability requirements:
 - 0.1 deg.C rms for front end RF electronics
 - 0.4 deg.C rms for back end RF electronics
 - Additional thermal requirements over seasonal periods
- Driving the design into the following features:
 - Need for Active Thermal Control in sensitive components zones
 - High thermal isolation between sensitive components and zones
 - Internal calibration sources for the Radiometer
 - Loop-back calibration for the Scatterometer
 - Many thermal sensors are distributed inside the sensitive electronics and on the structure in order to enable loss vs temp. corrections.
 - Built in scatterometer test mode for stability requirement verification
- Ground calibration challenges
 - Resolve absolute biases, and drifts over 7 days, seasonal fluctuations

Instrument Block Diagram

(Solid box = calibration test. Striped box = Calibration validation test.)

Aquarius Cal/Val, CEOS SAR 2009 Adam Freedman, JPL

page 9 November 18, 2009

AQUARIUS/SAC-D

Radiometer calibration model

L#,v,h	Losses for zone # and polarization v or h Loss for each thermal zone. Temperature dependent.
T#	Physical temperature for zone # Match available housekeeping telemetry
Tx	Radiometric antenna temperature Stokes vector
Μ	Mueller matrix
S	Two-port S-Parameter matrix

Instrument Timing

Aquarius Instrument Master Timing

One Aquarius science data block is 1.44 sec long and contains:

8 scatterometer cycles

12 radiometer sub-cycles

When scat is in single beam mode, the sequence is preserved; the same beam is used in all 18 PRIs.

The CND noise diode is synchronous with a V-pol noise-only scat measurement, cycling through each beam.

Aquarius Cal/Val, CEOS SAR 2009 Adam Freedman, JPL

page 11 November 18, 2009

diode, or zero-offset

Active Thermal Control

- Thermal stability is key to instrument stability
- Active thermal control architecture is distributed in order to optimize instrument mass and power resources:
 - Proportional Integral microcontroller housed with digital electronics. Closes a software algorithm loop to match sensor temperature to commanded setpoint.
 - Analog voltage regulator control loop compensates for bus voltage variations, to increase power efficiency
 - Analog heater modules located near the sensitive electronics
 - Each of the 4 thermal control zones circuits are independent and have redundant ADCs and control sensors.

Aquarius Cal/Val, CEOS SAR 2009 Adam Freedman, JPL

AQUARIUS/SAC-D

Required Total Power Performance

AQUARIUS/SAC-D

Expected Reference Model Performance for Kpc

Aquarius Cal/Val, CEOS SAR 2009 Adam Freedman, JPL

Aquarius Scatterometer Block Diagram Key Calibration Components

Key Calibration Components

Aquarius Cal/Val, CEOS SAR 2009 Adam Freedman, JPL

AQUARIUS/SAC-D

AQUARIUS/SAC-D

Scatterometer Stability Testing

AQUARIUS/SAC-D Scat Stability With Expected Thermal Perturbations

- Drift less than 0.1 dB over several orbits
- Orbit period 98 minutes
- Amplifier heater cycling 7 minutes
- Instrument T/Vac testing

- Science ground calibration is challenging
 - No corner reflectors, transponders, point targets
 - RFI common at L band
 - High accuracy stability requirements (0.1 dB, 0.1 K)

Instrument intracomparisons

- Cross-over comparisons
- Inter-beam comparisons
- Polarization comparisons

Geophysical references

- Land/ocean interfaces
- Vicarious ocean calibration
- Antarctica: Dome C
- Amazon rain forest
- Quiet, stable ocean
- Cold sky calibration (radiometer)
- In situ salinity, ocean roughness

Summary

- The Aquarius instrument completed the integration and test campaign in the Spring, was shipped to Argentina for integration with the spacecraft over the next 2-3 months, with planned launch at end of 2010.
- Elaborate thermal vacuum test, simulating worst case thermal environment variations in orbit (eclipse season), verified that the radiometer and scatterometer meet their stability requirements.
- Key design features contributing to this success:
 - Active thermal control in combination with passive thermal design ensures <0.4° C stability.
 - High RF isolation and thermally stable RF components
 - Internal RF calibration paths
 - Scatterometer test mode enabling the use of a stable fiber optic delay line to route the transmitted chirp back into the receiver, for round-trip stability verification.

BACKUP

Aquarius Cal/Val, CEOS SAR 2009 Adam Freedman, JPL

page 21 November 18, 2009

Instrument Summary 1

KEY ORBIT PARAMETERS

Parameter	Value		
Observatory Orbit Altitude (km)	657	(655-685 km)	
Orbit Inclination (deg)	98.0	(sun-synchronous)	
Orbit Equatorial Crossing	Crossing 6:00 PM ascending		
Ground-track repeat interval	7 days	s, 103 orbits	

KEY INSTRUMENT PARAMETERS

Parameter	Radiometer	Scatterometer
Frequency (MHz)	~1413	1260
Band Width (MHz)	≤ 26	4
Swath Width (km)	407	373
Polarization	Th, Tv, T+45, T-45	HH, HV, VV, VH
PRF (Hz)	100	100
No. Measurements Per Second	58.3	5.6
Transmitter Power (W)		200 - 250
Transmit Pulse Length (ms)		1
Pulse Integration Time (ms)	~9	~1.6
A/D (# bits)		12
Data Rate (kbits/sec)	11.0	2.1
Measurement Integration Time (s)	6	6
Dynamic Range (K, s ₀)	<5 K to 1400 K	0 dB to -40 dB

Key Parameters 6/20/05

Instrument Summary 2

KEY ANTENNA PARAMETERS

Parameter	Value					
Antenna	2.5 m diameter, offset parabola (2.5 x 2.9 linear dimension)			(off-nadir pointing angle of 33°)		
Feedhorns	3 feeds, 50 cm diam, equilateral triangle about focus					
		Radiometer			Scatterometer	
Parameter	Inner beam	Middle beam	Outer beam	Inner beam	Middle beam	Outer beam
Look Angle (deg)	25.8	33.8	40.3	25.9	33.9	40.3
Azimuth Angle (deg)	9.8	-15.3	6.5	9.7	-15.3	6.5
Average 3 dB Beam Width (deg)	6.1	6.3	6.6	6.5 / 4.7 *	6.7 / 4.8 *	7.1 / 5.1 *
Beam Efficiency (%)	94.0	92.4	90.4	89.9	87.6	85.4
Peak Gain (dBi)	29.1	28.8	28.5	28.5	28.1	27.7
Gain Stability (K, dB)	0.11	0.11	0.11	0.04	0.04	0.04
Peak Cross-Pole Gain (dBi)	6.5	8.6	10.3	6.3	8.4	10.1

* one-way / two-way 3 dB beam widths

KEY MEASUREMENT PARAMETERS/REQUIREMENTS

		Radiometer			Scatterometer	
Parameter	Inner beam	Middle beam	Outer beam	Inner beam	Middle beam	Outer beam
Incidence Angle (deg)	28.7	37.8	45.6	28.8	37.9	45.5
Footprint Size (3 dB one-way, two-way)	94 x 76	120 x 84	156 x 97	71 x 58	91 x 65	122 x 74
Noise-Equivalent Sigma-0 (dB, pulse)				-29	-26	-24
Stability (K, dB)	0.12	0.12	0.12	0.13	0.13	0.13
Radar Sensitivity (dB)				0.04	0.06	0.1
Radiometer Sensitivity (NEDT, K)	0.06	0.06	0.06			
Power Sensitivity (after integration) (dBm)	-137	-137	-137	-119	-126	-127

Note for reference: 0.1 K error for a 100 K $T_B = 0.1 \% => 0.004 \text{ dB}$ error

AQUARIUS/SAC-D Single-Channel Kpc Performance and Requirement

AQUARIUS/SAC-D

Level 1 ATBD (Radiometric Calibration)

$$\boldsymbol{\sigma}_{0} = \left(\frac{(4\pi)^{3}}{\lambda^{2}}\right) \left(\frac{L_{T_{bp}}L_{R_{bp}}}{P_{t}G_{r}G_{bp_{pk}}^{2}}\right) \left(\frac{1}{\iint\limits_{area} \frac{g^{2}dA}{R^{4}}}\right) \left(P_{e}-P_{n}\right)$$

Where

$L_{T_{bp}}$	Transmit path Loss between the start of the cal-loop and the antenna.
$L_{R_{bp}}$	Receive path Loss between the end of the cal-loop and the antenna.
P_t	Transmit Power.
G_r	Receiver Gain
$G_{bp_{pk}}$	Peak Antenna Gain.
g	Relative Antenna Gain Pattern
R	Distance from the radar antenna to the earth.
λ	Radar Wavelength
4π	Constant
P_{e}	The echo power measured by Aquarius
P_n	The noise power measured by Aquarius
$\sigma_{_0}$	Normalized Radar Backscatter.

