

## Innovative and Efficient Strategy of Calibrating Sentinel-1

Marco Schwerdt, Björn Döring, Manfred Zink,

Dirk Schrank

**CEOS SAR Calibration and Validation Workshop 2009** 



November 18, 2009







### **Overview**

→ Sentinel-1 Objectives

#### → Challenge of Sentinel-1 Calibration

#### Strategy / Recommendations

- → Successful Execution of all Calibration Activities
- Delivery of Calibrated SAR Data Products as soon as possible

#### Calibration Scenario

- → Coverage at Mid Latitude, suitable Test Site
- → Calibration Procedures
- → In-Orbit Calibration Plan

### → Conclusion











### **Sentinel-1 Objectives**

As part of the European GMES program the Sentinel-1 mission is designed to provide continuity of SAR operational applications in C-band for global earth observation especially after the ENVISAT/ASAR will be decommissioned

| Missian Life Time             | > 10 Veere                                                                                                                                      |       |
|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|                               |                                                                                                                                                 |       |
| SAR System                    | 2 Satellites, Right Looking                                                                                                                     |       |
| Life-Time per<br>Satellite    | 7 Years, extended to 12 Years                                                                                                                   |       |
| Orbit                         | <ul> <li>Near Polar Sun Synchronous</li> <li>693km</li> <li>175 Orbit in 12 Days Repeat</li> <li>Cycle</li> <li>Orbit Period 98.6min</li> </ul> | cea   |
| Centre Frequency              | 5.405 GHz (C-band)                                                                                                                              | 3     |
| Bandwidth                     | max. 100 MHz                                                                                                                                    |       |
| Antenna Array                 | <ul> <li>Size 12.3m x 0.84m</li> <li>14 Tiles with 20 Phase Centres<br/>on 5 Panels</li> <li>280 T/R Modules</li> </ul>                         | Novem |
| in der Helmheltz Gemeinschaft |                                                                                                                                                 |       |





November 2011

- CEOS 2009 -







## **Calibration Strategy I**

#### 7 Goal

- ✓ reduce the calibration effort during the commissioning phase
- $\rightarrow$  ensure stable and reliable operation of a precise SAR system over a period > 10

#### Internal Calibration Facility

- → compensate for drift effects by internal calibration pulses
- derive actual settings of the TRMs by pulse coded technique (PCC) for tuning/ optimizing the antenna model

#### Antenna Model

vears

- shift most of the antenna characterization from the CP to pre-launch activities
   shift the effort from space to ground
- ✓ provide all reference patterns for radiometric correction of the SAR data
- derive antenna settings for best instrument performance even for drifting and/or failed transmit/receiver modules (TRM) during the lifetime

![](_page_4_Figure_11.jpeg)

![](_page_5_Picture_0.jpeg)

## **Calibration Strategy II**

- Relative radiometric calibration of all SAR data products has to be already performed by applying:
  - internal calibration (drift compensation)
  - **shape** of the antenna **patterns**
  - gain offset between different beams

- derived by the antenna model

- ✓ Then, absolute radiometric calibration can be performed by measuring the whole Sentinel-1 system against reference targets independent of both:
  - the target position within the swath and
  - the **beam** and **mode** being operated.
- ✓ Thus, one absolute calibration factor is valid for all operation modes
- Minimum number of measurements required against reference targets is defined by the end-to-end system calibration budget:
  - worst case parameters across all modes are applied because measurements are performed independent of beam and mode
- Hence, the end-to-end system calibration budget for one specific mode will be better because not all worst cases are combined by one mode.

![](_page_5_Picture_14.jpeg)

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

![](_page_5_Picture_17.jpeg)

![](_page_5_Picture_18.jpeg)

![](_page_6_Picture_0.jpeg)

### **Recommendations / Rules**

- → Tight Schedule of 3 months CP
  - Co-/cross polar receiving channels should be measured simultaneously
  - ✓ Test site within crossover area of ascending and descending swathes
- $\neg$  High Radiometric Accuracy 1dB (3 $\sigma$ )
  - ✓ Measuring at least one beam of each mode
  - → Against 3 reference targets deployed within the swath
  - ✓ Measuring each selected beam by 2 passes (ascending/descending)
  - Measuring at least one beam with low, one with mid and one with high incidence angle
  - ✓ Measuring at least one beam in **both transmit polarisations**

![](_page_6_Figure_11.jpeg)

![](_page_7_Picture_0.jpeg)

### **Coverage of Sentinel-1 across Mid Latitude I**

![](_page_7_Figure_2.jpeg)

- Cross over region of beamsIW1, IW3, SM1, SM6, EW1
- Ascending and descending swath for each selected

![](_page_7_Picture_5.jpeg)

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

**Calibration Strategy for Sentinel-1** 

- CEOS 2009 -

![](_page_7_Picture_9.jpeg)

Schwerdt, November 2009 VG 8

![](_page_8_Picture_0.jpeg)

#### **Coverage of Sentinel-1 across Mid Latitude II**

![](_page_8_Figure_2.jpeg)

![](_page_9_Picture_0.jpeg)

### **Coverage of Sentinel-1 across Mid Latitude III**

![](_page_9_Figure_2.jpeg)

- Cross over region of beams IW1, IW3, S1, S6, EW1 and WM1 (asc and des)
- 3 target positions D01 D03 within one test site

![](_page_9_Picture_5.jpeg)

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Calibration Strategy for Sentinel-1

- CEOS 2009 -

![](_page_9_Picture_9.jpeg)

Schwerdt, November 2009 VG 10

![](_page_10_Picture_0.jpeg)

### **Absolute Radiometric Calibration**

| Beam / Mode                                                                                                                                                | 1. Cycle      | 2. Cycle      | 3. Cycle      | _ |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------|---------------|---|--|--|
| IW1                                                                                                                                                        | 1. day (des)  | 1. day (des)  | -             |   |  |  |
|                                                                                                                                                            | 4. day (asc)  | 4. day (asc)  | -             |   |  |  |
| IW3                                                                                                                                                        | 8. day (des)  | 8. day (des)  | -             |   |  |  |
|                                                                                                                                                            | 9. day (asc)  | 9. day (asc)  | -             |   |  |  |
| SM1                                                                                                                                                        | 6. day (des)  | -             | -             |   |  |  |
|                                                                                                                                                            | 11. day (asc) | -             | -             |   |  |  |
| SM6                                                                                                                                                        | -             | -             | 8. day (des)  |   |  |  |
|                                                                                                                                                            | -             | -             | 9. day (asc)  |   |  |  |
| EW1                                                                                                                                                        | -             | 6. day (des)  | -             | - |  |  |
|                                                                                                                                                            | -             | 11. day (asc) | -             |   |  |  |
| WM1                                                                                                                                                        | -             | -             | 6. day (des)  | _ |  |  |
|                                                                                                                                                            | -             | -             | 11. day (asc) |   |  |  |
|                                                                                                                                                            |               |               |               |   |  |  |
| within <b>3</b> repeat                                                                                                                                     |               |               |               |   |  |  |
| Cycles                                                                                                                                                     |               |               |               |   |  |  |
| Für Luft- und Raumfahrt e.V.         Calibration Strategy for Sentinel-           in der Helmholtz-Gemeinschaft         measurements         - CEOS 2009 - |               |               |               |   |  |  |

✓ 6 passes within 1 repeat cycle

| • 1. day    | 1\\\/4              |
|-------------|---------------------|
| • 4. day ∫  |                     |
| • 8. day    |                     |
| • 9. day ∫  | 1443, 31410         |
| • 6. day    |                     |
| • 11. day ∫ | SIVI1, EVV1, VVIVI1 |

- At least 2 acquisitions per beam (ascending/descending)
- Measuring at least one beam in
   both transmit polarisations modes (IW1/3 during the 2. repeat cycle)
- compliant with end-to-end system calibration budget in all modes

![](_page_10_Picture_8.jpeg)

## **Antenna Pointing**

#### → Rainforest

- → 2-way notch-pattern in elevation
- $\rightarrow$  different orbits (attitude control check)

#### Ground Receiver

- → 1-way notch-pattern in azimuth, 2 acquisitions
- $\neg$  at low, mid and high incidence angle
- → 1 notch-beam in second polarisation

| Beam | incidence<br>Angle | Po larisation | Day within<br>Repeat Cycle |
|------|--------------------|---------------|----------------------------|
| ANP1 | bw                 | Н             | 6. (des)<br>11. (asc)      |
| ANP2 | mid                | Н             | <b>1. (de</b> s)           |
| ANP2 | mid                | V             | <b>4. (a.sc</b> )          |
| ANP4 | high               | Н             | 8. (de s)<br>9. (a.sc)     |

not critical with respect to the schedule

- 2 acquisitions per beam (asc/des)
- 3 ground receiver per test site
- 3 beams

18 measurements within 1 repeat cycle

pointing knowledge

![](_page_11_Picture_15.jpeg)

 Deutsches Zentrum
 IR für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

**Calibration Strategy for Sentinel-1** 

- CEOS 2009 -

![](_page_11_Picture_19.jpeg)

# Antenna Model Verification (Req. 0.2dB)

#### → Rainforest (Elevation Pattern)

→ 2-way pattern, 4 acquisitions per selected

beam

- → 3 StripMap beams (low, mid, high inc. angle)
- $\checkmark$  Gain offset between different beams by IW /

ΕW

![](_page_12_Picture_7.jpeg)

![](_page_12_Picture_9.jpeg)

![](_page_12_Picture_10.jpeg)

![](_page_12_Picture_11.jpeg)

# Antenna Model Verification in Example of TerraSAR-X

![](_page_13_Figure_1.jpeg)

# **Antenna Model Verification (Req. 0.2dB)**

![](_page_14_Figure_1.jpeg)

![](_page_15_Picture_0.jpeg)

**In-Orbit Calibration Plan** 

![](_page_15_Figure_2.jpeg)

![](_page_16_Picture_0.jpeg)

# **Conclusion I**

- **Efficient calibration strategy** has been developed for Sentinel-1 based on:
  - **PCC method** providing the actual setting of individual T/R modules
  - precise antenna model providing antenna patterns and beam-to-beam gain offsets
  - only **1** absolute **calibration factor** for **all** operation **modes**
  - different **rules/recommendations** have been established
- 6 beams (IW1, IW3, SM1, SM6, EW1, WV1) have been selected for measurements against reference targets
- As shown in example of South Germany a test site with 3 transponders at mid latitude is compliant with
  - the end-to-end system calibration **budget** in all modes: < 1.0dB ( $3\sigma$ ) and
  - the schedule of the commissioning phase of 3 months
- → Long term system monitoring has been analyzed for different target types
  - **3 transponders** in addition to **rainforest**, a solution with highest accuracy
  - permanent scatterer well suitable for trend analysis over long periods, Peutschebultr not for evaluating the system directly or over a short term Galibration Strategy for Sentinel-1 in der Helmholtz-Gemeinschaft