#### LINKING SENTINEL-1 LEVEL-1 DATA QUALITY WITH LEVEL-2 PERFORMANCE



Malcolm Davidson Evert Attema Nicolas Floury Bjorn Rommen Paul Snoeij

European Space Agency Noordwijk The Netherlands

#### Outline



- Context
- Methodology
- Level-1 data quality
- Level-2 performance assessments for selected products
- Summary



#### **Geophysical information product accuracy assessment context**



Time

- Support design of mission and trade-off studies
- Verification of technical choices of the mission and system
- Basis for definition of calibration and validation activities
- Preparation user community for new data stream and its capabilities ahead of launch
- Framework to support joint exploitation of ESA GMES missions and national contributing missions (e.g. TerraSAR-X, COSMO/ Skymed)
- Feedback to Agency in design of future SAR missions and integration of evolving user requirements



# Assessment framework for Level-2 performance assessment





### Sentinel-1 Level-1 data quality specifications



| Parameter             | Strip-Map   | Interferometric  | Extra Wide       | Wave Mode           |
|-----------------------|-------------|------------------|------------------|---------------------|
|                       | Mode (SM)   | Wide-Swath       | Swath Mode       | (WV)                |
|                       |             | Mode (IW)        | (EW)             |                     |
| Polarisation          | Dual        | Dual             | Dual             | Single              |
|                       | (HH+HV,     | (HH+HV,          | (HH+HV,          | (HH, VV)            |
|                       | VV+VH)      | VV+VH)           | VV+VH)           | $(1111, \vee \vee)$ |
| Access (Incidence     | 20° - 45°   | 25° (min.        | 20° (min.        | 23° + 36.5°(mid     |
| angles)               | 20 - 43     | incidence angle) | incidence angle) | incidence angle)    |
| Azimuth Resolution    | < 5 m       | < 20 m           | < 40 m           | < 5 m               |
| Ground Range          | < 5 m       | < 5 m            | < 20 m           | < 5 m               |
| Resolution            | < 5 m       | < 5 m            | < 20 m           | < 5 m               |
| Range Looks           | Single      | Single           | Single           | Single              |
| Swath                 | > 80 km     | > 250 km         | > 400 km         | Vignette 20 x 20 km |
| NESZ                  | -22 dB      | -22 dB           | -22 dB           | -22 dB              |
| Radiometric Stability | 0.5 dB (3σ) | 0.5 dB (3σ)      | 0.5 dB (3σ)      | 0.5 dB (3σ)         |
| Radiometric Accuracy  | 1 dB (3σ)   | 1 dB (3σ)        | 1 dB (3σ)        | 1 dB (3σ)           |
| Phase Error           | 5°          | 5°               | 5°               |                     |



# Origin of geophysical products and sources of uncertainty



| Information<br>Product<br>(Level-2)                                                    | Origin of<br>Product<br>(Level-1)       | Random & Systematic Uncertainties to be<br>Considered<br>(List not exhaustive)                                                                                                                                                                                 |      |
|----------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Soil Moisture<br>Ocean Wind Speed                                                      | Absolute Value<br>of Image<br>Intensity | <ul> <li>Instrument Calibration, including Noise Bias<br/>and Non-linearity</li> <li>Radiometric Resolution, including Quantisation,</li> </ul>                                                                                                                |      |
| Ice Edge/Ice Map<br>Oil Pollution at Sea<br>Snow Cover<br>Forest Map<br>Land Cover Map | Image Intensity<br>Contrast             | <ul> <li>Noise and Speckle (Effective Number of Looks)</li> <li>Phase Errors</li> <li>Instrument Stability</li> <li>Atmospheric Effects</li> <li>Geometrical Effects (orbit position, pointing)</li> <li>Temporal De-correlation of Interferometric</li> </ul> |      |
| Interferometric<br>Products, e.g.<br>Subsidence                                        | Complex Image<br>(Amplitude &<br>Phase) | Image Pairs <ul> <li>Retrieval Uncertainties, including Retrieval</li> <li>Model Uncertainties and Validation Uncertainties</li> </ul>                                                                                                                         | imes |

#### **Interferometry (1)**



#### **Application context**

- Geo-Hazard Land Motion Services

#### Main mission parameters affecting performance

- Phase errors
- Quantisation noise
- Instrument noise





#### **Interferometry (2)**



100m2 Ground Resolution 832774 m Slant Range Methods for evaluation of geophysical 35.7 deg \_ **Mission Parameters** accuracy as a function of mission and 12 days Orbit repeat system parameters well established 0.70 Avg. target coherence Example reference scenario given on \_ 20 dB PS\_RCS right 0.98 Coherence 0.01m APS 2-way Target 5.14 deg APS\_std 129.80 deg Delay\_std Subsidence Rate Error (mm/year) -Permant Scatterer Coherence 700 Interferometric No PS (lobe) 1.33 mm/y 3 Performance -22 dB 2.5 NESZ 22 dB SNR Thermal 2 3.22 deg sphase thermal Thermal and 1.5 7.59 deg sphase\_target **Quantisation Noise** 16.99 dB SNR clutter 1 5.73 deg sphase clutter 0.5 3 deg sphase\_FDBAQ 0 30m 0 10 20 30 40 50 DEM std BAQ Phase Noise (deg) 30m Elevation Baseline std 24.24 deg topo std

#### Ship detection (1)

#### Application context

- Security
- Oil-spill monitoring
- Fisheries/Transport

#### Main mission parameters impacting performance

- Swath Width
- Timeliness of data (< 1 hour)</li>
- Resolution
- Instrument Noise
- Performance models exist linking Level-1 data quality with ship detection performance





lovaja



#### Ship Detection (2)



- Detection performance bette than existing C-band SAR satellites (ERS-2, Radarsat, ENVISAT)
- For the main IWS mode, ships with length > 40m can be detected with 90% accuracy
- For SM mode ships with length > 24m can be detected with 90% accuracy



#### **Classification error as a function of contrast**



- Methodology developed to explicitly calculate classification errors through integration of area/ volume of overlap
- Maximum likelihood criteria
- Classification error estimated as function of
  - radiometric contrast
  - level of bias (due to radiometric uncertainties)
- Applicable to wide variety of classification-based (thematic maps) applications



#### Ice monitoring (1)



#### **Application context**

- ice services
- manual interpretation of SAR images

## Main mission parameters impacting performance

- Swath Width
- Timeliness of data
- Polarisation
- Instrument Noise

#### **Geophysical accuracy**

 combination of large swath and high resolution to provide needed coverage and input for interpretation

 dual-polarisation useful in detecting and mapping ice regimes





#### Ice monitoring (2)



- Errors in ice classification estimated using previous methodology
  - S1 IWS Mode
  - Level-2 product scale = 20 x
     20m
  - 4 looks
  - 2 polarisations (VV+VH)
- Radiometric contrast between ice classes extracted from ESA IceSAR 2007 airborne campaign
- Main source of error: radiometric resolution





#### Land cover based on temporal signatures

- Robust land cover classification enabled through frequent revisit and multi-temporal metrics
  - Mean annual variation (MVA)
  - Min/Max/Mean backscatter
  - Texture
- High classification accuracies for basic land classes for sufficient temporal coverage (example with 8 acquisitions during growing season)



| Maximum Likelihood<br>VV & HV / 8 acq. dates | Water | Grassland | Cropland | Forest | Settlement | User accuracy |
|----------------------------------------------|-------|-----------|----------|--------|------------|---------------|
| Water                                        | 97.88 | 1.217     | 0.27     | 0.22   | 0.85       | 89.35         |
| Grassland                                    | 0.53  | 97.28     | 2.27     | 0.10   | 0.08       | 75.37         |
| Cropland                                     | 1.24  | 1.503     | 95.99    | 0.64   | 16.82      | 97.73         |
| Forest                                       | 0     | 0         | 1.15     | 98.92  | 0.085      | 99.21         |
| Settlement                                   | 0.35  | 0         | 0.32     | 0.12   | 82.16      | 91.09         |
| Prod. Accuracy                               | 97.88 | 97.28     | 95.99    | 98.92  | 82.16      | 97.34         |



sa

#### **Radiometric Resolution**



- Radiometric resolution is often a limiting factor on SAR-based classification performance
- Multi-temporal filtering exploiting image temporal stacks expected to significantly improve the radiometric resolution and classification performance



Sentinel-1

#### **ENVISAT ASAR**



#### **Forest/Non-Forest**



#### Context

 Forest/Non-forest mapping algorithms based on high temporal stability of forest with respect to other land cover classes

## Main mission parameters impacting accuracy

- Radiometric resolution





#### Synthetic classification performance potential based on ideal multi-temporal filtering



esa

Filter from Quegan and Yu (2001)



# Performance prediction for geophysical products



Gmes

| S1 Level-2 Product                            | Resolution   | Performance | Units                                            |
|-----------------------------------------------|--------------|-------------|--------------------------------------------------|
| Subsidence Rate                               | 5 x 20 m2    | 1.3         | mm/year                                          |
| Land Cover Classification (2<br>dB contrast ) | 100 x 100 m2 | 96          | % correct classification                         |
| Forest Non-Forest<br>Classification           | 30 x 30 m2   | 75          |                                                  |
| Soil Moisture                                 | 100 x 100 m2 | 1.2         | volume %                                         |
| Flood Mapping                                 | 30 x 30 m2   | 79          | % correct classification                         |
| Snow Cover Classification                     | 30 x 30 m2   | 75          | % correct classification                         |
| Ship Detection                                | 5 x 20 m2    | 40          | ship length (m) for 90%<br>detection probability |
| Sea Surface Wind Speed                        | 100 x 100 m2 | 0.8         | m/s (1 sigma)                                    |
| Sea Surface Currents                          | 5 Hz         | 30          | cm/s                                             |

#### **Summary**



- Sentinel-1 data products maintain the data quality of ESA's previous SAR missions (ERS-1/-2, ENVISAT ASAR)
  - Continuity in performance for geophysical products secured
- Evaluation of accuracy of geophysical products indicates improvements due to frequent revisit, coverage and dual-polarisation capabilities
  - System impact on Level-2 (and higher) evaluated based on Level-1 specifications
  - User requirements met or exceeded
  - Results documented in ESA Sentinel-1 Error Budget document
- Future work focus on development and standardisation of methodologies for accuracy assessment, product prototyping and (post-launch) verification of accuracy (e.g. through validation)

