

Polarimetric Calibration of the Ingara Bistatic SAR

Alvin Goh,^{1,2} Mark Preiss,¹ Nick Stacy,¹ Doug Gray²

1. Imaging Radar Systems Group Defence Science and Technology Organisation

2. School of Electrical & Electronic Engineering University of Adelaide

Orbit

Bistatic SAR experiments

Australian Government Department of Defence Defence Science and Technology Organisation

Reciprocity $\Rightarrow s_{hv} = s_{vh}$ in monostatic but not bistatic: potentially more information in bistatic measurements

Supplement *Ingara* X-band full-pol. airborne SAR with stationary full-pol. ground-based receiver on 15 metre high tower

Synch. using GPS 1PPS; operate at fixed 650 Hz PRF

Operate in circular spotlight-SAR mode: orbit radii 3 - 6 km; altitudes 1000 - 3600 m; incidence angles $53^{\circ} - 82^{\circ}$

Simultaneously collect 600 MHz bandwidth fullpol. monostatic and bistatic data over wide variety of angles

Beechcraft 1900C

Australian Government

Department of Defence

Defence Science and

Technology Organisation

Polarimetric measurement model is

Measurements

in which

Polarimetric

measurement model

Receive distortion

Transmit

distortion

By rewriting **O**, **S**, **N** as $\mathbf{o} = (o_{hh}, o_{hv}, o_{vh}, o_{vv})^T$, $\mathbf{s} = (s_{hh}, s_{hv}, s_{vh}, s_{vv})^T$, $\mathbf{n} = (n_{hh}, n_{hv}, n_{vh}, n_{vv})^T$, we obtain

o = P s + n

O = R S T + N

where

 $\mathbf{P} = \mathbf{Y} \mathbf{M} \mathbf{A} \mathbf{K}$

$\mathbf{M} = \begin{bmatrix} u & uv & 1 & v \\ uz & u & z & 1 \end{bmatrix} \qquad \mathbf{A} = \begin{bmatrix} 0 & 0 & \alpha & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad \mathbf{K} = \begin{bmatrix} 0 & 0 & k & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$	M =	1 v w vw z 1 wz w u uv 1 v	A =	α 0 0	0 1 0 0	0 0 α 0	0 0 0 1	K =	<i>k</i> ² 0 0	0 <i>k</i> 0	0 0 <i>k</i> 0	0 0 0 1	
--	-----	----------------------------------	------------	-------------	------------------	------------------	------------------	-----	---------------------------------	--------------------	-------------------------	------------------	--

in which

Polarimetric calibration involves estimation of k, α , u, v, w, z (leaving Y to radiometric calibration).

whereupon

 $C = C_o - C_n = P C_s P^H$

Covariance matrix of distributed-target is commonly postulated to have the simple form:

$$\mathbf{C}_{\mathbf{s}} = \begin{bmatrix} \sigma_{11} & 0 & 0 & \sigma_{41}^{*} \\ 0 & \beta & \beta & 0 \\ 0 & \beta & \beta & 0 \\ \sigma_{41} & 0 & 0 & \sigma_{44} \end{bmatrix} \quad \text{from } \begin{cases} s_{\text{hv}} = s_{\text{vh}} \text{ (scattering reciprocity)} \\ \langle s_{ii}s_{ij} \rangle = \langle s_{ii}s_{ji} \rangle = 0 \text{ (azimuthal symmetry)} \end{cases}$$

This provides the basis for calculating α , u, v, w, z from an input covariance matrix **C**:

Ainsworth TL, Ferro-Famil L, Lee J-S, 2006, "Orientation angle preserving *a posteriori* polarimetric SAR calibration," *IEEE Trans. Geosci. Remote Sens.*, **44**(4): 994-1003.

Klein JD, 1992, "Calibration of complex polarimetric SAR imagery using backscatter correlations," *IEEE Trans. Aerosp. Electron. Syst.*, **28**(1): 183-94.

Lopez-Martinez C, Cortes A, Fabregas X, 2007, "Analysis and improvement of polarimetric calibration techniques," *Proc. IGARSS 2007*, Barcelona, Spain, p. 5224-7.

Quegan S, 1994, "A unified algorithm for phase and cross-talk calibration of polarimetric data - theory and observations," *IEEE Trans. Geosci. Remote Sens.*, **32**(1): 89-99.

Compare accuracy using numerical simulations:

Set $\sigma_{11} = \overline{\sigma_{44}} = 0 \text{ dB}$, $|\sigma_{41}| = -1 \text{ dB}$, $\beta = -12 \text{ dB}$, Y = k = 1Randomly assign $0 < |u|, |v|, |w|, |z| < 0.1, 0.5 < |\alpha| < 1.5, 0 \le \angle \sigma_{41}, \angle \alpha, \angle u, \angle v, \angle w, \angle z < 2\pi$

Results with full noise-compensation, i.e. $\mathbf{C} = \mathbf{C}_{o} - \mathbf{C}_{n}$

Calibration-target methods

Model for calibration target measurements when cross-talk is negligible (or already corrected) is

 $O_{hh} = Y k^2 \alpha S_{hh}$ $O_{hv} = Y k S_{hv}$ $O_{vh} = Y k \alpha S_{vh}$ $O_{vv} = Y S_{vv}$

(noise assumed negligible)

Hence, from measurements of a depolarising target with known s_{vh}/s_{hv} , we can estimate α via

 $\alpha = \frac{O_{\rm vh}/O_{\rm hv}}{S_{\rm vh}/S_{\rm hv}}$

With a previously-obtained estimate of α , and measurements of a target with known s_{hh}/s_{vv} , we can estimate $\pm k$ via

$$k = \pm \sqrt{\frac{O_{\rm hh}/O_{\rm vv}}{\alpha \ S_{\rm hh}/S_{\rm vv}}} \tag{1}$$

From measurements of a depolarising target with known s_{hh}/s_{vh} or s_{hv}/s_{vv} , we can also estimate k via

We can also just use (2) to resolve the sign ambiguity in (1).

For bistatic system, direct-path signal can also be used in lieu of calibration target.

AUSTRALIA

March 2008 images

March 2008 data

Australian Government Department of Defence Defence Science and

Technology Organisation

Calibration target measurements 2

THE UNIVERSITY OF ADELAIDE AUSTRALIA

March 2008 measurements

Direct-path signal measurements

Direct-path signal measurements supplement the set of calibration target measurements.

'Scattering' matrix of direct-path signal is S

$$= \begin{bmatrix} -\cos \varphi & -\sin \varphi \\ -\sin \varphi & \cos \varphi \end{bmatrix}$$

Estimate channel-imbalance from

$$k = \pm j \sqrt{\frac{O_{hh}}{\alpha O_{vv}}}$$
 and/or $k = \frac{O_{hh}}{O_{vh}} \tan \varphi = -\frac{O_{hv}}{O_{vv}} \cot \varphi$

Department of Defence Defence Science and

Cross-talk estimation

Expect same v & z in air and ground data but different *u* & *w*.

For each run, initial cross-talk ratio u, v, w, z estimates obtained using method Az.

Take 'median' of distributions to obtain final calibration parameters:

u^(air)

- 'median' of *u* estimates from air data only
- 'median' of u estimates from ground data only (gnd)
- $v^{(air)}$, $v^{(gnd)}$: 'median' of pooled v estimates from air and ground data
 - w^(air): 'median' of *w* estimates from air data only
 - W^(gnd) 'median' of *w* estimates from ground data only
 - $z^{(air)}$, $z^{(gnd)}$: 'median' of pooled z estimates from air and ground data

where 'median' of set of complex z_n is taken as: median({ $\text{Re}(z_n) \mid n$ }) + j median({ $\text{Im}(z_n) \mid n$ })

Department of Defence

Defence Science and Technology Organisation

Post-calibration

target measurements

March 2008 measurements

March 2008 measurements

Distributed-target cross-polar measurements

March 2008 data

December 2008 data

Conclusion

- High variability is present in calibration target measurements possibly related to large range of look angles (e.g. bistatic from 9° to 17°): use Polarimetric Active Radar Calibrators (PARCs) in future?
- Assumptions of distributed-target azimuthal-symmetry, i.e. $\langle s_{ii} s_{ij}^* \rangle = 0$, may not be valid: validity of cross-talk calibration solution is uncertain.
- Fair agreement in α and k channel-imbalance estimates from distributed-target, calibration target and direct-path signal measurements is found.
- Application of calibration solution to measurements produces results generally more consistent with those expected of calibrated data.

AUSTRALIA