UAVSAR Polarimetric Calibration

Alex Fore Bruce Chapman Scott Hensley Thierry Michel Ron Muellerschoen

UAVSAR

- UAVSAR is a L-band airborne SAR
- Typically we have a 16 km swath.
- Electronically steer beam to greater than +/- 20 deg in azimuth.
- Designed for repeat-pass InSAR, it uses precision GPS + autopilot to fly within a 10m tube about desired flight path.
- Applications: fault-line monitoring, land subsidence studies, glacier flow, targeted polarimetric studies, ...etc.

Radiometric / Phase Calibration

- Antenna pattern correction performed within the processor.
- The radiometric and phase calibration is performed within the processor via precomputed parameters:
 - Per channel gain bias (HH,HV,VH,VV).
 - HH-VV phase bias linear fit to incidence angle.
 - HV-VH phase bias linear fit to incidence angle.
- We use corner reflectors and compare the estimated σ_0 with the measured σ_0 .
 - Corner reflector array in dry lake bed in Rosamond, CA.
 - 23 corner reflectors (side length = 2.4 meters).
 - Position of CR measured very accurately with differential GPS.

Radiometric / Phase Calibration Estimation

Gather data from multiple flights over array and compare observations to predictions.

- Predicted RCS computed using azimuth and elevation pointing angles + aircraft attitude.
- We over-sample (8x) the signal and compute the peak response for HH and VV channels.
- We compute the relative phase of the HH and VV channels (expect it to be zero).
- We compute the ratio of the HH response to the VV response (expect them to be the same).

Evaluation of Calibration

Cross-Talk Calibration (v. 1)

- Cross-talk calibration is performed as as stand-alone process after the processor.
 - We start with a fully general distortion model.
 - k is co-pol channel imbalance; α is the cross-pol channel imbalance.
 - u, v, w, z are the cross-talk parameters.
 - O is observed response; S is calibrated response.
 - Co-pol imbalance and radiometric cal already done => $k=1/v\alpha$; Y=1.
- The first version of the cross-talk calibration used Quegan's method to estimate the cross-talk parameters.
 - Estimated the covariance using a "swath" of pixels; 10 pixels wide in range; extending over the whole image.
 - Filter out pixels with large hh-hv correlation (>0.3) and very bright regions (> -5dB co-pol).
 - Computed the cross-talk parameters for that "swath"; applied a 100 pixel moving window average to cross-talk parameters in range.

Issues with v. 1

- Cross-talk estimation fails for some data, ocean / island lines in particular.
 - Typically we would see estimates of residual α that were worse than the pre-calibration estimates in some portions of the image. ($abs(\alpha) > 6 dB$ in some places!)
 - This seemed to be due to the large regions of ocean being included in the computation of the covariance matrix. (even though we filter out pixels with significant co-cross correlations).
- Cross-talk removal did not seem to be very successful.
 - Estimates of residual cross-talk were only marginally less than the initial cross-talk estimates.
 - Typically estimate ~ -15 dB before cross-talk calibration and ~ -20 dB after.
- To alleviate the 1st problem we attempted to use a sliding window to compute the covariance.
 - Cross-talk parameters now a function of range and azimuth.
 - However, then we could distinctly see structure in the resulting estimates of the cross-talk parameters.

Cross-Talk Calibration (v. 2)

- Motivated by these issues, we explored the Ainsworth method of computing the cross-talk parameters.
 - The major difference is in the model covariance matrix that is assumed.
 - Ainsworth's method explicitly allows for co-cross polar correlations (the A and B terms).
- We compute the covariance (C) matrix in a sliding window.
 - Use Ainsworth et al method to compute (α , u, v, w, z) parameters.
 - Filter out pixels with large hh-hv correlation (>0.5) and very bright regions (> -5dB co-pol).
 - Use a very large window to improve statistics (201*201 > 40,000 pixels in window).
 - Ainsworth's method performs much better than Quegan's method.
 - Much less residual cross-talk after calibration.
 - Less unphysical dependence of cross-talk parameters on target type.
- Estimating cross-talk using a moving window is much more CPU intensive; it takes 5 hours to process 10^5 lines.
 - Made a process-parallel (no MPI, no OpenMP) implementation via domain decomposition.
 - Scales up to IO limitations. (we use 16 concurrent processes, each operating on a chunk of the total image).

Ainsworth Model Covariance matrix:

$egin{pmatrix} C_{hhhh} & A^{*} & A^{*} & C_{hhvv} \ A & eta & eta^{'} & B \ A & eta^{'} & eta & B \ C^{*}_{_{hhvv}} & B^{*} & B^{*} & C_{_{VVVv}} \end{pmatrix}$

Ainsworth Parameter Estimation

- Inputs: C observed covariance matrix in window
- Outputs: (α, u, v, w, z) the cross-talk parameters.
- Algorithm:
 - Estimate α from C
 - Set (u=0; v=0; w=0; z=0; iter=1;)
 - Do while(iter < 12 && diff < TOL)
 - Construct calibration matrix E from (α,u,v,w,z)
 - Construct C_try:=E C E^{*⊤}
 - Estimate (A,B) from C_try
 - Estimate (α',u',v',w',z') from C_try and A, B
 - Update parameters:
 - $\alpha = \alpha^* \alpha'$
 - $u=u+u'/\sqrt{\alpha}; v=v+v'/\sqrt{\alpha}$
 - w=w+w'√α; z=z+z'√α
 - Diff=max(cabs(u'),cabs(v'),cabs(w'),cabs(z'))
 - Iter=iter+1

Solve linear system of equations for u, v, w, z:

Estimation of α , A, B: $C_{HVHH} + C_{VHHH}$				
~		2		
$\alpha = \frac{C_{VHHV}}{ C_{VHHV} } \sqrt{\frac{C_{VHVH}}{C_{HVH}}}$	$\frac{C_{VHVH}}{\tilde{c}}$	$B - \frac{C_{HVVV} + C_{VHVV}}{C_{VHVV}}$		
	C_{HVHV}	2		

Calibration Matrix:

$$E = \frac{1}{(uv-1)(vz-1)} \begin{pmatrix} 1 & -w & -v & vw \\ -u/\sqrt{\alpha} & 1/\sqrt{\alpha} & uv/\sqrt{\alpha} & -v/\sqrt{\alpha} \\ -z\sqrt{\alpha} & wz\sqrt{\alpha} & \sqrt{\alpha} & -w\sqrt{\alpha} \\ uz & -z & -u & 1 \end{pmatrix}$$

Cross-talk Removal Performance Ainsworth (window method)

• Before cross-talk calibration:

- We typically estimate cross-talk *parameters* on the order of -15 dB.
- Some variation in the cross-pol channel imbalance is evident.
- After cross-talk calibration:
 - We see cross-talk *parameters* that are -25 to -40 dB depending on target type.
 - α parameter is nearly 1, and has almost no imaginary part.

Mean params vs Azimuth; black pre-cal; red post-cal

Before xtalk calibration:

ean Alpha	[dB,deg]:	-0.099307	1.696073
Mean U	[dB,deg]:	-16.007141	-48.953918
Mean V	[dB,deg]:	-14.943415	6.774332
Mean W	[dB,deg]:	-14.935524	-171.495956
Mean Z	[dB,deg]:	-15.975571	131.579514

After xtalk calibration:

ean Alpha	[dB,deg]:	0.002567	0.069257
Mean U	[dB,deg]:	-32.918896	-162.805344
Mean V	[dB,deg]:	-32.496246	-0.088953
Mean W	[dB,deg]:	-32.422440	-179.125076
Mean Z	[dB,deg]:	-33.061737	19.846634

Mean params vs Range; black pre-cal; red post-cal

Cross-talk Removal Performance Quegan (window method)

- Before cross-talk calibration:
 - We typically estimate cross-talk *parameters* on the order of -15 dB.
 - Some variation in the cross-pol channel imbalance is evident.
- After cross-talk calibration:
 - Generally estimate residual cross-talk parameters ~ -20 dB
 - α parameter still shows some fluctuations, however the phase is nearly fter stalk calibration: Mean Alpha [dB,deg]: Zero.

er xtalk calibration:				
0.009207 -0.065000				
20.248520 52.851189				
18.019426 -147.475693				
17.890226 -146.620285				
20.114719 52.107059				

-0.045941

-12.287176

-14.176173

-18.194115

-15.490755 178.854462

1.758549

-37.337124

13.322126

-2.522836

Mean params vs Range; black pre-cal; red post-cal

Before xtalk calibration: Mean Alpha [dB,dea]: -

Mean U [dB,deg]:

Mean V [dB, deg]:

Mean W [dB,deg]:

Mean Z [dB,deg]:

Polarization Signatures

Channel Islands

Entropy/Alpha -- Central Valley

Entropy/Alpha – Howland Forest

Entropy/Alpha -- Channel Islands

Conclusion

- We have shown that UAVSAR is a well-calibrated airborne SAR.
 - Radiometric calibration within 1 dB.
 - Phase calibration within 6 deg.
 - Cross-talk *power* about -30 dB *before* cross-talk correction.
- We have explored various cross-talk removal algorithms.
 - We use a sliding window to compute the covariance matrix.
 - We find that the method of Quegan gives cross-talk estimates that show significant "structure" from the target.
 - We find that the method of Ainsworth gives more consistent cross-talk estimates that Quegan.

Extra Slides

Predicted Corner Response

$$\sigma_{cr} = \frac{4\pi l^4}{\lambda^2} \left[\cos\theta_{cr} + \sin\theta_{cr} \left(\sin\phi_{cr} + \cos\phi_{cr} \right) - \frac{2}{\cos\theta_{cr} + \sin\theta_{cr} \left(\sin\phi_{cr} + \cos\phi_{cr} \right)} \right]^2$$

Figure 6: Diagrams of a triheaderal corner reflector where the vector (blue) points towards the UAVSAR aircraft imaging pod. The incidence angle relative to the corner reflector, $\theta_{cr} := \theta_{in} + \theta_{cl}$, where θ_{in} is the incidence angle, and θ_{el} is the elevation of the corner reflector relative to the ground. ϕ_{cr} is the azimuth angle relative to one of the vertical sides of the corner reflector. The maximum response of the corner reflector is for $\phi_{cr} = 45 \text{ deg and } \theta_{cr} = 54.736 \text{ deg}$.

Cross-Talk

Distortion Model:

$$\begin{pmatrix} O_{hh} \\ O_{vh} \\ O_{hv} \\ O_{vv} \end{pmatrix} = Y \begin{pmatrix} 1 & w & v & vw \\ u & 1 & uv & v \\ z & wz & 1 & w \\ uz & z & u & 1 \end{pmatrix} \begin{pmatrix} \alpha & 0 & 0 & 0 \\ 0 & \alpha & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} k^2 & 0 & 0 & 0 \\ 0 & k & 0 & 0 \\ 0 & 0 & k & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} S_{hh} \\ S_{vh} \\ S_{hv} \\ S_{vv} \end{pmatrix} + \begin{pmatrix} N_{hh} \\ N_{vh} \\ N_{hv} \\ N_{vv} \end{pmatrix}$$
 With k=1/\delta x; Y=1:

$$\begin{pmatrix} O_{hh} \\ O_{vh} \\ O_{hv} \\ O_{hv} \\ O_{vv} \end{pmatrix} = D \begin{pmatrix} S_{hh} \\ S_{hv} \\ S_{hv} \\ S_{vv} \end{pmatrix}$$
 $D := \begin{pmatrix} 1 & w\sqrt{\alpha} & v/\sqrt{\alpha} & vw \\ u & \sqrt{\alpha} & uv/\sqrt{\alpha} & v \\ z & wz\sqrt{\alpha} & 1/\sqrt{\alpha} & w \\ uz & z\sqrt{\alpha} & u/\sqrt{\alpha} & 1 \end{pmatrix}$
 $k - \text{Co-pol channel imbalance}$

 α - Cross - pol channel imbalance

Equivalent formulation:

$$\begin{pmatrix} O_{hh} & O_{hv} \\ O_{vh} & O_{vv} \end{pmatrix} = Y \begin{pmatrix} k & w \\ ku & 1 \end{pmatrix} \begin{pmatrix} S_{hh} & S_{hv} \\ S_{vh} & S_{vv} \end{pmatrix} \begin{pmatrix} \alpha k & \alpha kz \\ v & 1 \end{pmatrix} + \begin{pmatrix} N_{hh} & N_{hv} \\ N_{vh} & N_{vv} \end{pmatrix}$$

Calibration Matrix:

$$D^{-1} = \frac{1}{(uv-1)(vz-1)} \begin{pmatrix} 1 & -w & -v & vw \\ -u/\sqrt{\alpha} & 1/\sqrt{\alpha} & uv/\sqrt{\alpha} & -v/\sqrt{\alpha} \\ -z\sqrt{\alpha} & wz\sqrt{\alpha} & \sqrt{\alpha} & -w\sqrt{\alpha} \\ uz & -z & -u & 1 \end{pmatrix}$$

- References: ٠
 - T.L. Ainsworth, L. Ferro-Famil, and Jong-Sen Lee. Orientation angle preserving a posteriori polari- metric sar calibration. IEEE Transactions on Geoscience and Remote Sensing, 44(4):994–1003, April 2006. ٠
 - S. Quegan. A unified algorithm for phase and cross-talk calibration of polarimetric data-theory and observations. IEEE Transactions on Geoscience and Remote Sensing, 32(1):89–99, Jan 1994. ٠

Antenna Pattern

- UAVSAR uses an electronically steered array
- 12 elements in the azimuth direction; 4 in elevation.

San Andreas

U parameter – Central Valley

V parameter – Central Valley

W parameter – Central Valley

Z parameter – Central Valley

Z parameter – California Central Valley

- Quegan Z parameter varies significantly as the ground scattering changes
 - Wet/dry; fallow/active; ...etc.
 - This is not physical, but due to the model imposing constraints that are not valid. (i.e. hh-hv correlation == 0).
- Ainsworth method gives much more stable results, both for the magnitude and phase of the Z parameter.
 - Other parameters (u,v,w) show similar behavior.

More on Antenna Pattern

$$g\left(\alpha,\epsilon,\alpha_{0}\right) = \frac{\left(\cos\alpha\cos\epsilon\right)^{1.5}}{1+a_{2}}\operatorname{sinc}\left[\frac{\pi L_{e}}{\lambda}\left(\sin\alpha-\sin\alpha_{0}\right)\right]\left\{\cos\left[\frac{\pi L_{d_{1}}}{\lambda}\left(\cos\alpha\sin\epsilon\right)\right]+a_{2}\cos\left[\frac{\pi L_{d_{2}}}{\lambda}\left(\cos\alpha\sin\epsilon\right)\right]\right\}.$$

Here, $\lambda = 0.238$ meters is the wavelength, α is the antenna azimuth angle, ϵ is the antenna elevation angle, α_0 is the antenna azimuth angle to which we electronically steer the antenna array, $L_e = 1.5$ meters is the antenna length in the \hat{e} direction, $L_{d_1} = 0.1$ meters is the spacing between the two inner rows of the antenna array, and $L_{d_2} = 0.3$ meters is the spacing between the two outer rows of the antenna array.

Figure 7: In Figure (7(a)) we show a diagram of the UAVSAR antenna geometry and antenna-face coordinates. Note that the antenna is actually mounted to the aircraft with an additional rotation about the \hat{I} direction of -45 deg. In Figure (7(b)) we show the definition of the elevation ϵ and azimuth α directions. Figures are from [4].

