Radiometric calibration aided by Permanent Scatterers: current status and future capabilities

Paolo Biancardi(1)
Davide Giudici(1)
Davide D’Aria (1)
Andrea Monti Guarnieri(1)(2)
Paul Snoeij(3)
Betlem Rosich(3)
Current Image Calibration Techniques Overview

The PSCal Calibration Technique

Algorithm and Performances on ERS-2 datasets & ESA transponders

Work in progress / future activities:

- Coregistration
- Stack size vs. Accuracy
- Elevation pattern estimation
- Polarimetric datasets calibration

Conclusions
Current calibration techniques

- The SAR calibration aims to:
 - Estimation of the targets radar cross section
 - SAR instrument health status monitoring
 - Antenna Pattern, T/R Modules, Power losses

- Current calibration techniques exploit:
 - a proper internal calibration network
 - homogeneous stable targets, mainly the rain forest
 - active and passive reflectors (Transponders, corner reflectors)

- A calibration site is quite expensive to be deployed and even more expensive to be maintained for the mission lifetime. Moreover, it demands for dedicated acquisitions that interferes with the mission operations.
PSCaI’s Principle and Aim

- The PS *phases* are currently used for estimating deformations.
- The idea is to exploit the PS *amplitudes* for accurate normalization & calibration.
- The goal is the estimate of the *calibration constant*, to carry out image calibration.
- A large number of images stacks means a large number of “calibration sites”!
Validation #1: ERS-2 dataset - Milan

- SLC stack of 40 ERS-2 images over Milan urban area: 1995 to 2000

Stable Targets are selected along entire Slant Range

110000 Selected Targets
The PSCal retrieves the ERS-2 gain decay with time.

Estimated dispersion of the detrended NORM: 0.2 dB
Validation #2: ERS-2 dataset - Flevoland

- SLC stack of 46 ERS-2 images over Flevoland (NL), 1995-2000

66000
Selected Targets

ERS-2
3 Transponders available

TR1

Pasadena, 17th November 2009
• Comparison between results from Flevoland and Milan Dataset:

Both temporal series show a decrease of about 2.5 dB from 1995 to 2000.

• Both detrended series show the same dispersion around central value:

\(\approx 0.2 \text{ [dB]} \)
Flevoland – Transponder Measures

- 3 TR measures from Flevoland images are considered.

TR1: 9 measures available
Dispersion: 0.5 [dB]

TR2: 25 measures available
Dispersion: 0.6 [dB]

TR3: 29 measures available
Dispersion: 0.3 [dB]
Flevoland – **PScal** vs. Transponders

Comparison - Detrended PScal-NORM & Transponders

- TR1: **0.51** [dB]
- TR2: **0.65** [dB]
- TR3: **0.35** [dB]
- PScal: **0.2** [dB]

Pasadena, 17th November 2009
Flevoland – **PScal** vs. Transponders

- Let’s analyze data with at least 2 TR measures that go together.

Comparison - Detrended NORM & Transponders

Difference: Mean Transponder & PScal

- Dates: 22/12/95, 05/04/96, 01/11/96, 01/01/97, 30/05/97, 01/01/98, 17/09/99, 28/06/1999

- dB values: -1.70, -1.20, -0.70, -0.20, 0.30, 0.80

Pasadena, 17th November 2009

CEOS
Currently, there are four development directions:

1. Very precise coregistration

2. Convergence test: estimation accuracy vs. Number of images needed

3. Elevation antenna pattern estimation

Precise coregistration the requirements for phase

- For phase-related applications, a coregistration error of 0.5 samples is tolerated
Coregistration accuracy requirements are stronger for amplitude than for standard phase-related applications.

Coregistration Error = 0.25 samples
Amplitude Error = 0.1 dB
Coregistration: shift estimation from orbits

- Considering the orbits of the Master and of the Slave Image and a DEM, the shift can be estimated.
The righthand plot shows the DIFFERENCE between shifts computed with FLAT topography and the shifts computed with the SRTM DEM.

The altitude information introduces: (1) a constant shift, (2) a shift varying with topography.
The altitude information introduces: (1) a constant shift, (2) a shift varying with topography.

The righthand plot shows the DIFFERENCE between shifts computed with FLAT topography and the shifts computed with the SRTM DEM.
Computing shifts with cross-correlation

Master and slave image are divided into \(N \) small blocks \(W_n \). For each block azimuth and range shifts are estimated, evaluating cross-correlation maximum:

\[
g_{(n)}(\Delta x, \Delta y) = \sum_{(x,y) \in W_n} I_2(x - \Delta x, y - \Delta y)I_1(x, y)
\]

\[
(\Delta x, \Delta y)_{(n)} = \max_{\Delta x, \Delta y} g_{(n)}(\Delta x, \Delta y)
\]
Shift estimation from orbits and from data: Pros and cons

<table>
<thead>
<tr>
<th>Shift estimation approach</th>
<th>PROS</th>
<th>CONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORBITS + DEM</td>
<td>- Not affected by temporal scenario de-correlation</td>
<td>- Precision limited to orbits knowledge accuracy</td>
</tr>
<tr>
<td></td>
<td>- Takes into account of the topographic variations</td>
<td>- Instrument timing errors may cause wrong shift estimates</td>
</tr>
<tr>
<td></td>
<td>- Computationally Fast</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Punctual estimation of the shift</td>
<td></td>
</tr>
<tr>
<td>DATA CROSS-CORRELATION</td>
<td>- Very precise for bright/high-contrast scenarios</td>
<td>- Shift estimation accuracy strongly depends on the type of scenario</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Shift estimation accuracy depend on scenario temporal de-correlation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Estimated shift accuracy depends from resolution</td>
</tr>
</tbody>
</table>
A combined algorithm for coregistration

- Combined use of
 - orbits
 - DEM
 - data correlation

- The shifts computed with ORBITS and DEM are refined by data cross-correlation.
The estimated shifts from orbits (1) and from data correlation (2) are subtracted to obtain a residual correction term (3) that can correct timing errors.
The plot shows the differences wrt the shifts computed considering flat earth, computed with the orbits (magenta) and with data cross correlation (blue).

Final correction term: This term is added to the shifts computed with flat earth.
The algorithm allows very fine coregistration of images with:

- high topography variations within the image
- high normal baseline

The key point is the combination of the advantages of the 2 most used coregistration parameters estimation techniques:

- The orbits provide fast estimates, robust against temporal decorrelation
- The estimates obtained with orbit information and the DEM are corrected with data-correlation, making the output estimates proof from orbital errors

- The combined estimation of the coregistration parameters using inverse geocoding and cross-correlation makes the total processing time more less the sum of the time needed to perform the single estimations.
A convergence test has been done to estimate the number of images required to obtain algorithm convergence.
Convergence test – Standard deviation vs. # of images

- Let’s analyze the estimate residual wrt the linear trend as a function of the images used.
IDEA: to perform PS-CAL estimation on different range blocks. The difference between the various blocks gives an estimation of the elevation pattern.
Elevation pattern Results

- Estimation was performed dividing the entire image into 10 equally spaced range blocks.

- ERS-2 range pattern is almost constant.

Estimation Standard Deviation for each image:

<table>
<thead>
<tr>
<th>Year</th>
<th>Std (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1996</td>
<td>0.04</td>
</tr>
<tr>
<td>1997</td>
<td>0.06</td>
</tr>
<tr>
<td>1998</td>
<td>0.08</td>
</tr>
<tr>
<td>1999</td>
<td>0.1</td>
</tr>
<tr>
<td>2000</td>
<td>0.12</td>
</tr>
</tbody>
</table>

Further validation activity is needed.
Next step: PScal application to multi-polarimetric data

• Goals:
 1. Evaluation of impacts of polarization on PS amplitudes
 2. Estimation of one normalization constant for each polarization
Conclusions

- The PS cal approach integrates initial calibration measures, available in the commissioning phase in a limited set of cal-sites, with Permanent Scatterers measures.
- It allows for a large number of costless calibration sites, all around the world, without interfering with mission operations.
- Preliminary validation on ERS-2 series shows an accuracy comparable with the best results selected from a set of three transponders (0.06 dB).
- Future capabilities will include:
 - antenna pattern estimation (the validation of this approach is on-going).
 - evaluation of polarization impact using multi-polarimetric datasets.