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•  Current calibration techniques exploit: 

Current calibration techniques 

•  The SAR calibration aims to: 

ENVISAT ASAR Transponder 

–  Estimation of the targets radar cross section 

–  SAR instrument health status monitoring 
•  Antenna Pattern, T/R Modules, Power losses 

•  a proper internal calibration network 

•  active and passive reflectors (Transponders, corner reflectors) 
•  homogeneous stable targets, mainly the rain forest 

•  A calibration site is quite expensive to be deployed and even more 
expensive to be maintained for the mission lifetime. Moreover, it demands 
for dedicated acquisitions that interferes with the mission operations. 
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PSCal ’s Principle and Aim 

•  The PS phases are currently used for estimating deformations 

•  The idea is to exploit the PS amplitudes for accurate normalization & calibration 

•  A large number of images stacks means a  large number of “calibration sites”! 

potential 
calibration sites current 

calibration sites 

Rain 
Forest 

•  The goal is the estimate of the calibration constant , to carry out image calibration 
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Validation #1: ERS-2 dataset - Milan 
•   SLC stack of 40 ERS-2 images over Milan urban area: 1995 to 2000 

rg az 

Milan urban area 

Stable Targets are selected  
along entire Slant Range 

110000  
Selected Targets 
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PSCal calibration: Milan ERS-2 – Results 

Milan – NORM Constants Estimation Milan – Detrended NORM Constants 

Estimated dispersion of the 

 detrended NORM : 0.2 dB 

The PSCal  retrieves the ERS-2 gain decay with time 
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TR1 

•   SLC stack of 46 ERS-2 images over Flevoland (NL), 1995-2000 

ERS-2 

3 Transponders 
available 

TR1 

TR2 

TR3 

66000  
Selected Targets 

Validation #2: ERS-2 dataset - Flevoland 
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Pscal Estimated NORM Constants 
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PSCal  ERS-2: Flevoland vs. Milan 

•  Comparison between results 
from Flevoland and Milan 
Dataset: 

 Both temporal series 
show a decrease of 

about 2.5 dB from 1995 
to 2000. 

Pscal Estimation - Detrended NORM Constants 
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2.5 dB 

•  Both detrended series show 
the same dispersion around 
central value: 

≈ 0.2 [dB] 
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Flevoland – Transponder Measures 

 TR1:  9 measues available 

 Dispersion: 0.5 [dB] 

 TR2: 25 measues available 

 Dispersion: 0.6 [dB] 

 TR3: 29 measues available 

 Dispersion: 0.3 [dB] 

•  3 TR measures from Flevoland 
images are considered . 
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Flevoland – PSCal  vs. Transponders 

Comparison - Detrended PScal-NORM & Transponders 
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•  Dispersions: 

•  TR1: 0.51 [dB] 

•  TR2: 0.65 [dB] 

•  TR3: 0.35 [dB] 

•  PScal: 0.2 [dB] 
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Flevoland – PSCal  vs. Transponders 
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•  Let’s analyze data with at least 2 TR measures that go togheter. 
PScal 
TR1 
TR2 
TR3 

[dB] 
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PS cal: work in progress 

•  Currently, there are four developement directions : 

1.  Very precise coregistration 

2.  Convergence test:  estimation accuracy vs. Number of images needed 

3.  Elevation antenna pattern estimation 

4.  Investigation of the polarization effect on calibration using multi-polarimetric 
Radarsat-2 datasets. 
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Precise coregistration the requirements for phase 

•  For phase-related applications, a coregistration error of 0.5 samples is tolerated   

Error = 0.2 samples  Error = 0.5 samples  Error = 1 sample  

Sample interferogram 
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Precise coregistration: the requirement for amplitude 

•  Coregistration accuracy requirements are stronger for amplitude than for standard 
phase-related applications   

Coregistration Error = 0.25 samples  Amplitude Error = 0.1 dB  

0.25 samples 

0.1 dB 
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Coregistration: shift estimation from orbits 

•  Considering the orbits of the Master and of the Slave Image and a DEM, the shift 
can be estimated  

Direct  geocoding 

Inverse  geocoding 

master 
slave 
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Shift RG : Difference with orbit fit 

samp x2 
The righthand plot shows the DIFFERENCE between shifts computed with FLAT 
topography and the shifts computed with the SRTM DEM. The LAS-VEGAS case is very significative because the city is surronded by 3000-m high mountains, and the city itself 
is at 600m. 

Test on LAS-VEGAS area. Images: 20030103 and 20030418 (Bn=-1238m) 

Shift estimation from orbits: the influence of topography 

samples 

The altitude information introduces: (1) a constant shift, (2) a shift varying with topography.   

The righthand plot shows the DIFFERENCE between shifts computed with FLAT topography 
and the shifts computed with the SRTM DEM. 
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Shift estimation from orbits: the influence of topography (detail) 

SRTM DEM Range-Shift estimations difference 

samples meters 

The altitude information introduces: (1) a constant shift, (2) a shift varying with topography.   

Latitutde 

Lo
ng

itu
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Latitutde 
The righthand plot shows the DIFFERENCE between shifts computed with FLAT topography 
and the shifts computed with the SRTM DEM. 
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Computing shifts with cross-correlation 

Master and slave image are divided into N small blocks Wn. For each block azimuth 
 and range shifts are estimated, evaluating cross-correlation maximum: 

Master 

Estimated range shifts example 

Slave 
(size of blocks exaggerated) 

azimuth 

range 
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Shift estimation from orbits and from data: Pros and cons 

Shi$	  es(ma(on	  approach	   PROS	   CONS	  
ORBITS	  +	  DEM	   -‐	  Not	  affected	  by	  temporal	  

scenario	  de-‐correla(on	  
-‐	  Takes	  into	  account	  of	  the	  
topographic	  varia(ons	  
-‐	  Computa(onally	  Fast	  
-‐	  Punctual	  es(ma(on	  of	  the	  
shi$	  

-‐	  Precision	  limited	  to	  orbits	  
knowledge	  accuracy	  
-‐	  Instrument	  (ming	  errors	  
may	  cause	  wrong	  shi$	  
es(mates	  

DATA	  CROSS-‐CORRELATION	   -‐	  Very	  precise	  for	  bright/high-‐
contrast	  scenarios	  

-‐	  Shi$	  es(ma(on	  accuracy	  
strongly	  depends	  on	  the	  type	  
of	  scenario	  
-‐	  Shi$	  es(ma(on	  accuracy	  
depend	  on	  scenario	  temporal	  
de-‐correla(on	  
-‐	  Es(mated	  shi$	  accuracy	  
depends	  from	  resolu(on	  
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A combined algorithm for coregistration 

•  Combined use of  
–  orbits 
–  DEM 
–  data correlation 

•  The shifts computed 
 with ORBITS and  
DEM are refined by  
data cross-correlation 

Compute shifts using 
orbits + DEM 

DEM Orbits 

Compute shifts using 
cross-correlation 

Master Slave 

+ 
Residual shifts 

Compute shifts-correction  
polynomials 

Orbit-Shifts  Data correl. -Shifts  

- 
 M 

+ 
Corrected shifts 

+ 
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Residual Range shifts 

Residual shifts 

Orbit-Shifts  Data correl. -Shifts  

The estimated shifts 
from orbits (1) and from 
data correlation (2) are subtracted 
to obtain a residual correction term (3)  
that can correct timing errors. 

-	

azimuth 

range 
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Data-corrected orbits-shifts 

Final 

correction term: 
This term is  
added to the  
shifts computed  
with flat earth. 

The plot shows the differences wrt the shifts computed considering flat earth, 
computed with the orbits (magenta) and with data cross correlation (blue). 
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PRO/CONS of the combined algorithm 

The algorithm allows very fine  
coregistration of images with: 

•  high topography variations  
within the image 
•  high normal baseline 

The key point is the combination of  
the advantages of the 2 most used  
coregistration parameters  
estimation techniques: 

•  The orbits provide fast 
 estimates,  robust against  
temporal decorrelation 

•  The estimates obtained with orbit  
information and the DEM are  
corrected with data- 
correlation,making the output  
estimates proof from orbital errors 

•  The combined estimation of  

the coregistration parameters  

using inverse geocoding and  

cross-correlation makes the  

total processing time more  

less the sum of the time  

needed to perform the single  

estimations. 
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Convergence test – Number of images needed 
•  A convergence test has been done to estimate the number of images required to 
obtain algorithm convergence. 
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Convergence test – Standard deviation vs. # of images 

•  Let’s analyze the estimate residual wrt the linear trend as a function of the images 
used. 

>15 
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elevation 

Elevation Pattern Estimation 

p estimated CAL constants 

Slant Range 

 Elevation Pattern Estimation 
IDEA: to perform PS-CAL estimation on different range blocks. 

the difference between the various blocks gives an estimation of the elevation pattern 
IDEA: to perform PS-CAL estimation on different range blocks. 

the difference between the various blocks gives an estimation of the elevation pattern 
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Elevation pattern Results 
•  Estimation was performed dividing the entire image into 10 equally spaced range 
blocks. 

•  ERS-2 range pattern is almost costant 

Estimation Standard 
Deviation for each image: 
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•  Furhter validation activity is 
needed 
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Next step: PScal application to multi-polarimetric data 

•  Goals:  
1. Evaluation of impacts of polarization on PS amplitudes 
2. estimation of one normalization constant for each polarization 

RADARSAT 2 images 
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Conclusions 

•  The PS cal approach integrates initial calibration measures, available in 
the commissioning phase in a limited set of cal-sites, with Permanent 
Scatterers measures. 
•  It allows for a large number of costless calibration sites, all around the 
world, without interfering with mission operations. 
•  Preliminary validation on ERS-2 series shows an accuracy comparable 
with the best results selected form a set of three transponders (0.06 dB).   

•  Future capabilities will include: 
• antenna pattern estimation (the validation of this approach is on-
going). 
•  evaluation of polarization impact using multi-polarimetric 
datasets. 


