Radiometric calibration aided by Permanent Scatterers: current status and future capabilities

Paolo Biancardi⁽¹⁾ Davide Giudici⁽¹⁾ Davide D'Aria ⁽¹⁾ Andrea Monti Guarnieri⁽¹⁾⁽²⁾ Paul Snoeij⁽³⁾ Betlem Rosich⁽³⁾

Dipartimento di Elettronica e Informazione Politecnico di Milano

Advanced Remote Sensing Systems a POLIMI *spin-off*

Outline

→ Current Image Calibration Techniques Overview

- →The **PSCal** Calibration Technique
 - →Algorithm and Performances on ERS-2 datsets & ESA transponders
- \rightarrow Work in progress / future activities:
 - \rightarrow Coregistration
 - \rightarrow Stack size vs. Accuracy
 - \rightarrow Elevation pattern estimation
 - \rightarrow Polarimetric datasets calibration

 \rightarrow Conclusions

Current calibration techniques

- The SAR calibration aims to:
 - Estimation of the targets radar cross section
 - SAR instrument health status monitoring
 - Antenna Pattern, T/R Modules, Power losses

• Current calibration techniques exploit:

- a proper internal calibration network
- homogeneous stable targets, mainly the rain forest
- active and passive reflectors (Transponders, corner reflectors)
- A calibration site is quite expensive to be deployed and even more expensive to be maintained for the mission lifetime. Moreover, it demands for dedicated acquisitions that interferes with the mission operations.

ENVISAT ASAR Transponder

PSCal 's Principle and Aim

- The PS *phases* are currently used for estimating deformations
- The idea is to exploit the PS *amplitudes* for accurate normalization & calibration
- The goal is the estimate of the *calibration constant*, to carry out image calibration
- A large number of images stacks means a large number of "calibration sites"!

Validation #1: ERS-2 dataset - Milan

• SLC stack of 40 ERS-2 images over Milan urban area: 1995 to 2000

110000 Selected Targets

PSCal calibration: Milan ERS-2 – Results

The **PSCal** retrieves the ERS-2 gain decay with time

Validation #2: ERS-2 dataset - Flevoland

• SLC stack of 46 ERS-2 images over Flevoland (NL), 1995-2000

PSCal ERS-2: Flevoland vs. Milan

Pscal Estimated NORM Constants

Flevoland – Transponder Measures

Pasadena, 17th November 2009

Flevoland – **PSCal** vs. Transponders

Pasadena, 17th November 2009

Flevoland – **PSCal** vs. Transponders

• Let's analyze data with at least 2 TR measures that go togheter.

aresys

PS cal: work in progress

- Currently, there are four development directions :
 - 1. Very precise coregistration
 - 2. Convergence test: estimation accuracy vs. Number of images needed
 - 3. Elevation antenna pattern estimation
 - 4. Investigation of the polarization effect on calibration using multi-polarimetric Radarsat-2 datasets.

Precise coregistration the requirements for phase

• For phase-related applications, a coregistration error of 0.5 samples is tolerated

<u>earesys</u>

Precise coregistration: the requirement for amplitude

• Coregistration accuracy requirements are stronger for amplitude than for standard phase-related applications

Coregistration: shift estimation from orbits

• Considering the orbits of the Master and of the Slave Image and a DEM, the shift can be estimated master

© 55.4 1997 - Processed by POLIMI, electronic & information dpt.

Shift estimation from orbits: the influence of topography

Test on LAS-VEGAS area. Images: 20030103 and 20030418 (Bn=-1238m)

The righthand plot shows the DIFFERENCE between shifts computed with FLAT topography and the shifts computed with the SRTM DEM.

The altitude information introduces: (1) a constant shift, (2) a shift varying with topography.

Shift estimation from orbits: the influence of topography (detail)

Range-Shift estimations difference

The righthand plot shows the DIFFERENCE between shifts computed with FLAT topography and the shifts computed with the SRTM DEM.

The altitude information introduces: (1) a constant shift, (2) a shift varying with topography.

Computing shifts with cross-correlation

Master and slave image are divided into N small blocks W_{n} . For each block azimuth and range shifts are estimated, evaluating cross-correlation maximum:

$$g_{(n)}(\Delta x, \Delta y) = \sum_{(x,y) \in W_n} I_2(x - \Delta x, y - \Delta y) I_1(x, y)$$

$$(\Delta x, \Delta y)_{(n)} = \max_{\Delta x, \Delta y} g_{(n)}(\Delta x, \Delta y)$$

Shift estimation from orbits and from data: Pros and cons

Shift estimation approach	PROS	CONS
ORBITS + DEM	- Not affected by temporal	- Precision limited to orbits
	scenario de-correlation	knowledge accuracy
	- Takes into account of the	- Instrument timing errors
	topographic variations	may cause wrong shift
	- Computationally Fast	estimates
	- Punctual estimation of the	
	shift	
DATA CROSS-CORRELATION	- Very precise for bright/high-	- Shift estimation accuracy
	contrast scenarios	strongly depends on the type
		of scenario
		- Shift estimation accuracy
		depend on scenario temporal
		de-correlation
		- Estimated shift accuracy
		depends from resolution

A combined algorithm for coregistration

Residual Range shifts

Data-corrected orbits-shifts

aresys

PRO/CONS of the combined algorithm

The algorithm allows very fine coregistration of images with:

- high topography variations within the image
- high normal baseline

The key point is the combination of the advantages of the 2 most used coregistration parameters estimation techniques:

• The orbits provide fast estimates, robust against temporal decorrelation

• The estimates obtained with orbit information and the DEM are corrected with data-correlation, making the output estimates proof from orbital errors

• The combined estimation of the coregistration parameters using inverse geocoding and cross-correlation makes the total processing time more less the sum of the time needed to perform the single estimations.

Convergence test – Number of images needed

• A convergence test has been done to estimate the number of images required to obtain algorithm convergence.

Pasadena, 17th November 2009

Convergence test – Standard deviation vs. # of images

• Let's analyze the estimate residual wrt the linear trend as a function of the images used.

Pasadena, 17th November 2009

Elevation Pattern Estimation

IDEA: to perform PS-CAL estimation on different range blocks.

the difference between the various blocks gives an estimation of the elevation pattern

Elevation pattern Results

• Estimation was performed dividing the entire image into **10** equally spaced range blocks.

Next step: PScal application to multi-polarimetric data

- Goals:
- 1.Evaluation of impacts of polarization on PS amplitudes
- 2.estimation of one normalization constant for each polarization

Conclusions

- The PS cal approach integrates initial calibration measures, available in the commissioning phase in a limited set of cal-sites, with Permanent Scatterers measures.
- It allows for a large number of costless calibration sites, all around the world, without interfering with mission operations.
- Preliminary validation on ERS-2 series shows an accuracy comparable with the best results selected form a set of three transponders (0.06 dB).
- Future capabilities will include:
 - •antenna pattern estimation (the validation of this approach is ongoing).
 - evaluation of polarization impact using multi-polarimetric datasets.

