Conada Certre for Remote Sensing Earth Sciences Sector RS-1 Transponder 1 of 35 SAR Targets

Yaraskavitch, Marshall, Hawkins,

Gibson, Crocker

Purpose $\begin{aligned} & \text { Geometry } \\ & \text { O Optimal Pointings }\end{aligned}$

- Finding the Satellite
- Requirements
- Coordinate Transforms
- Operation
- Results
- RS2
- Accuracy Testing
- Vs. RPT Results
- Vs. STK
- Conclusions

$$
\begin{aligned}
& \frac{d \phi}{d t}=\frac{d}{d t}\left(\frac{4 \pi R}{\lambda}\right)=0 \\
& \frac{d}{d t}\left(\left|\vec{P}_{s}(t)-\vec{P}_{o}\right|\right)=\frac{d R}{d t}=0
\end{aligned}
$$

- Requires Target location
- Requires Satellite location

$$
\begin{gathered}
\vec{P}_{o} \\
\vec{P}_{s}(t)
\end{gathered}
$$

RS-1 Transponder
 11 of 35
 Non-steered Pointing - RS-1

$(t) \bullet \vec{v}(t)=0$

$\left(\vec{P}_{s}(t)-\vec{P}_{o}\right) \cdot \frac{d \vec{P}_{s}(t)}{d t}=0$

- Require Target location
- Require Satellite location
- Require Satellite velocity

Finding Satellite Position

- How do we implement this? -Use NORAD TLEs
- Freely available
- Standard for Orbit description
- Well established propagators available for development
- SGP-4 (Simplified General Perturbations) Propagator
- Position, velocity wrt time from TLEs
- Existing MATLAB® code
- Other issues
- Coordinate frames
- Calculating Pointings

Angular Resolution

- $\Delta \theta= \pm 0.01^{\circ}$ for azimuth and elevation
- For a target $\mathrm{R}=1000 \mathrm{~km}, \Delta \mathrm{~s}= \pm 170 \mathrm{~m}$

- Time Resolution
- Not crucial for 'event' time
- few seconds
- Crucial for orbit propagation.
- v ~ 7.5 km/s for RS-1
- Can therefore travel 0.17 km in ~ 0.02 s

$$
\Delta t=\frac{\Delta s}{v}=0.02 \mathrm{~s}
$$

Coordinate Transforms

- Propagator output:
- True Equator Mean Equinox (TEME) frame
- X axis in direction of vernal equinox, Z axis of rotation

Optimal satellite position calculation:

- Earth Centred, Earth Fixed (ECEF)
- X axis points towards $\left(0^{\circ}, 0^{\circ}\right), \mathrm{Z}$ axis of rotation
- Local vertical (ENU) (East, North, Up) \Rightarrow (X,Y,Z)
- Azimuth and Elevation Calculation:
- Local Polar Coordinates (LPC) (Az, El, Range)

" SW written in MATLAB®, two primary modes:
- Fast
- Inputs: satellite, target location, and approximate event time
- Orbit found from TLE archive
- Outputs: Optimal pointing
- Custom
- Inputs: satellite, target location, time window, initial time step, Specific TLE, and polar wobble coordinates
- Orbit found from specific TLE
- Outputs: Optimal pointing
- Batch
- Table input/output

Canada Centre for Remote Sensing
Earth Sciences Sector
RS-1 Transponder
35

Geometrical Confirmation

22 of 35

- Ottawa RPT Events 2007/08 to 2008/06
- RMS errors:
- Azimuth 0.06°
- Elevation 0.03°

Res RPT Events 2005/07 to 2005/08

- RMS errors:
- Azimuth 0.11°
- Elevation 0.04°

Conclusions

- A general new tool, TSP-2, has been developed and validated for Target Pointing.
- Currently being used for Validation of RS-2
- Government and Commercial Clients
- Available through CCRS
- Hire a Student or Two!

- Wistorical RS-1 and ENVISAT RPT pointings
- RPT pointings empirically correct to $\sim 0.1^{\circ}$
- Compare TSP to STK results
- Premise: STK is industry standard propagator
- STK allows TLE input
- Pointings for events between 2008/07/02, 00:00:00 to 12:00:00
- Same TLE's used

Satellite	Location	Δ Azimuth $\left({ }^{\circ}\right)$	Δ Elevation $\left({ }^{\circ}\right)$	Δ Range (m)
RS2	ON0	0.001	0.001	-22.16
RS1	ON0	-0.001	-0.001	-9.94
ENVISAT	ON0	-0.001	0.000	-20.62
TERRASAR-X	ON0	0.000	-0.001	-5.51
ALOS	ON0	0.002	0.000	-20.46
RS2	NT0	-0.011	-0.001	-0.42
RS1	NT0	-0.001	0.000	-13.79
ENVISAT	NT0	0.001	-0.001	-17.74
TERRASAR-X	NT0	0.001	-0.001	-11.83
ALOS	NTO	-0.004	0.000	-18.48
RMS Average		0.004	0.001	15.66

Canada Centre for Remote Sensing Earth Sciences Sector
 Absolute Position Error - TSP vs STK

Difference in ECEF position

Satellite	Location	$\boldsymbol{\Delta} \mathbf{X}$ $\mathbf{(m)}$	$\boldsymbol{\Delta} \mathbf{Y}$ $\mathbf{(m)}$	$\boldsymbol{\Delta} \mathbf{Z}$ $\mathbf{(m)}$	$\boldsymbol{\Delta R}$ $\mathbf{(m)}$	Relative Error $(\%)$
RS2	ON0	7.06	-23.22	-6.72	25.18	0.0004%
RS1	ON0	7.99	-11.87	2.30	14.49	0.0002%
ENVISAT	ON0	-2.77	2.89	20.56	20.95	0.0003%
TERRASAR-X	ON0	9.66	-25.84	-11.33	29.82	0.0004%
ALOS	ON0	-4.03	-3.40	15.31	16.20	0.0002%
RS2	NT0	-1.36	199.65	70.35	211.69	0.0030%
RS1	NT0	6.54	16.45	23.34	29.29	0.0004%
ENVISAT	NT0	-9.03	22.51	23.73	33.93	0.0005%
TERRASAR-X	NT0	15.94	37.83	29.97	50.83	0.0007%
ALOS	NT0	-8.14	7.74	19.75	22.72	0.0003%
RMS Average		8.23	65.95	28.60	72.36	0.0010%

Canada Centre for Remote Sensing
 Earth Sciences Sector
 RS-1 Transponder
 33 of 35
 Along/Across Track Error - TSP vs STK

		Along track error	Radial error	Across track error
Satellite	Location	$\hat{v} \bullet \Delta r$ (\mathbf{m})	$\hat{r} \bullet \Delta r$ $(\mathrm{~m})$	$\hat{v} \times \hat{r} \bullet \Delta r$ $(\mathrm{~m})$
RS2	ON0	20.82	12.26	7.15
RS1	ON0	7.28	11.83	4.15
ENVISAT	ON0	16.99	12.02	-2.25
TERRASAR-X	ON0	27.07	11.98	3.71
ALOS	ON0	10.15	12.37	2.42
RS2	NT0	-210.90	16.86	6.65
RS1	NT0	22.44	16.95	-8.16
ENVISAT	NT0	29.23	17.08	-2.11
TERRASAR-X	NT0	46.79	17.08	-10.06
ALOS	NT0	14.79	17.20	1.14
RMS Average		70.61	14.77	5.57

- Majority of error in along-track direction (i.e. direction of velocity)
- Very small error in across-track direction

A Versatile Tools is available for Growing Community

> \$4M in CRs by one Cdn Company in 2008

- InSAR - Geohazards
- Subsidence
- Landslides
- Plate shifting
- Phase Calibration
- Amplitude Calibration
- Positioning
Reflector Installation
Above Permafrost

Natural Resources Ressources naturelles Canada

References

FR Hoots and RL Roehrich. (1980). "Spacetrack Report \#3: Models for Propagation of the NORAD Element Sets." US Air Force Aerospace Defense Command, Colorado Springs, C.O. 90p. DA Vallado, P Crawford, R Hujsak, TS Kelso. (2006). "Revisiting Spacetrack Report \#3", AIAA 2006-6753, 88p.
DA Vallado. (2001). "Fundamentals of Astrodynamics and Applications." Springer.

- Hawkins, RK, LD Teany, SK Srivastava, and SYK Tam, "RADARSAT precision transponder", in Advances in Space Research, Vol. 19, No.9, pp. 1455-1465.
- ---(2007). "Conversion of Geodetic coordinates to the Local Tangent Plane." Portland State Aerospace Society. Version 2.01 (2007.9.15)" http://www.psas.pdx.edu
- "NORAD Two-Line Element Set Format." Accessed 2008/05/14. http://celestrak.com/NORAD/documentation/tle-fmt.asp
" "Brief Introduction To TLEs And Satellite IDs." Accessed 2008/05/14. http://satobs.org/element.html

Keplerian Elements:

- Semi-major axis of orbit
- Eccentricity of orbit
- Mean motion
- Inclination
- Right ascension of ascending nod
- Argument of perigee
- True anomaly
- Mean motion dot
- Mean motion dot dot
- Bstar drag parameter

http://www.mindspring.com/~n2wwd/html/orbital_description.html

