
3. Results
 
•  The estimated forest  canopy height map for our proposed method is shown in Fig.  4.   This study area 

contains extensive mangrove and inland forest coverage, and a wide range of forest canopy heights up to 50 
m.

•  A density plot comparing the forest height estimates from the proposed method vs. the LVIS RH100 testing 
set (all LVIS samples not used to train the DNN) is shown in Fig. 5.

•  A scatter plot comparing the proposed method to the maximum forest height of 17 field plots within the area 
is shown in Fig. 6.

•  The results have greater accuracy than those using the standard baseline selection methods found in the 
literature, and greater spatial coverage (30 m spatial resolution, with no gaps between samples) than the 
LVIS data used for training.  The results demonstrate strong agreement with both the LVIS testing set and 
the in situ field data (linear fits with r2 of 0.87 and 0.97, respectively).

2. Methods
•  We estimate forest heights from the UAVSAR data using polarimetric synthetic aperture radar interferometry (PolInSAR) 

and the random volume over ground (RVoG) forest model, which relates the physical characteristics of the forest to the 
radar observations.  

•  For multi-baseline data (i.e., greater than two different flight tracks, see Fig. 1), we can estimate multiple independent 
forest height estimates from the various baselines which must then be weighted or selected in order to obtain a single 
forest height for each radar image pixel.  For this dataset, UAVSAR data was collected from 4 spatially separated flight 
tracks, making baseline selection a vital step in the forest height estimation process.

•  We tackled this baseline selection problem using a deep neural network (DNN) classifier.  The input feature set contained a 
variety of radar-derived metrics based on the PolInSAR coherences and coherence region shape, viewing and terrain 
geometry, and radar backscatter.  A flowchart of the method is shown in Fig. 2.  The structure of the DNN classifier is 
shown in Fig. 3.  The DNN was trained using a sparse subset of the LVIS relative height 100 (RH100) data with 600 m 
between simulated lidar tracks and 60 m sample spacing along track, similar to GEDI.

Mapping Forest Height in Gabon Using UAVSAR Multi-Baseline 
Polarimetric SAR Interferometry and Lidar Fusion 

Michael Denbina and Marc Simard 
Jet Propulsion Laboratory, California Institute of Technology 

2017 AGU Fall Meeting, Paper #: B23B-2066 

National Aeronautics and Space Administration 
 

Jet Propulsion Laboratory 
California Institute of Technology 
Pasadena, California 
 
 
www.nasa.gov 
 
Copyright 2017.  All rights reserved. 

National Aeronautics and  
Space Administration

4. Conclusions
 
•  Developed a new method for fusion of PolInSAR and lidar data in order to generate more accurate PolInSAR forest 

height estimates.  Resulting forest height maps have a high spatial resolution (30 m) and a wide coverage area (22 
km swath width of UAVSAR).  The method considers the PolInSAR baseline selection process as a supervised 
classification problem, which we perform using a deep neural network classifier trained with sparsely distributed lidar-
derived forest heights.

•  Produced forest height maps for Pongara National Park in the country of Gabon.   Results validated using LVIS 
samples excluded from the data fusion procedure with RMSE of 5.24 m, and using 17 field data plots with RMSE of 3.97 
m.  For comparison, we also performed baseline selection using standard radar-derived data quality metrics (coherence 
region eccentricity, and expected phase center height variance), but these methods resulted in less accurate forest height 
estimates (RMSE values of 7.4 m compared to the LVIS RH100 testing set and field data).

•  Results demonstrate the strong potential for fusion of spaceborne PolInSAR and lidar data.  Sparse lidar sample 
spacing of 600 m between tracks and 60 m along track is sufficient for training the classifier.  Data from the Global 
Ecosystem Dynamics Investigation (GEDI) lidar will satisfy this requirement, though the data is expected to be noisier than 
the LVIS airborne lidar data used in this study.  Future work can address the impact of the increased noise on the resulting 
fusion forest height maps, as well as on applying this method to other datasets and study areas.

1. Introduction
 
•  We used airborne remote sensing data from NASA’s Uninhabited Aerial Vehicle Synthetic Aperture Radar 

(UAVSAR) and Land, Vegetation, & Ice Sensor (LVIS) lidar to map forest canopy height for a study area in 
Pongara National Park, Gabon.  These data were collected as part of NASA’s AfriSAR campaign in 2016.

•  We developed a new deep learning-based method to perform data fusion of radar and lidar forest height 
estimates.  The result has the wide coverage area and high spatial resolution of UAVSAR, but with improved 
accuracy compared to a purely radar-based approach.

•  Obtaining high resolution maps of forest height is important for understanding the ecosystem carbon budget, 
and for quantifying the effects of deforestation and forest growth. Forest biomass can be estimated from 
forest height using allometric equations derived from field measurements.

•  Developing methods for fusion of radar and lidar data is vital to make optimum use of data from future 
spaceborne  missions,  such  as  the  NASA-ISRO  SAR  (NISAR)  and  the  Global  Ecosystems  Dynamics 
Investigation (GEDI) lidar.  Our method is designed to be used with lidar data with a similar sample spacing 
as that expected from the GEDI mission.

Fig. 4.  Forest height map created using UAVSAR and LVIS fusion for Pongara National Park, 
Gabon.  Overlaid on Landsat-8 imagery, available from U.S. Geological Survey. 
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Fig. 2. Flowchart of the forest height fusion method. 

Fig. 5. Density plot of forest height using the 
proposed fusion method vs. LVIS RH100 
forest height. 
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Fig. 3. Structure of the deep neural network classifier.  For the input, output, and dense (hidden) layers, the 
number in parentheses is the number of neurons in the layer.  For the dropout layers, the number in 
parentheses is the dropout factor (e.g., for a factor of 0.2, 20% of the inputs to that layer are randomly 
discarded, in order to reduce overfitting).  The size of the layers gradually reduces in order to reduce the 
number of neurons to a more meaningful feature set (built-in feature selection).  The dense layers use a 
rectified linear activation function, and the output layer uses a softmax activation function.  The classifier is 
trained using the categorical cross entropy loss function and the Adam optimizer. 

Fig. 6. Scatter plot of forest height using 
the proposed fusion method vs. field data. 

Fig. 1. Repeat UAVSAR passes over a forested area.  Each pair of flight tracks can be used to form an 
interferometric baseline, with forest height sensitivity based on the spatial separation between the tracks. 


